Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 2003
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2003 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Current Biology
Article . 2003
versions View all 4 versions

The Synaptonemal Complex Component C(2)M Regulates Meiotic Crossing over in Drosophila

Authors: Manheim, Elizabeth A.; McKim, Kim S.;

The Synaptonemal Complex Component C(2)M Regulates Meiotic Crossing over in Drosophila

Abstract

The synaptonemal complex (SC) is a proteinaceous structure that forms between homologously paired meiotic chromosomes. Previous studies have suggested that the SC is required for meiotic crossing over in Drosophila. However, only one component of this structure, C(3)G, has been identified in Drosophila.Mutations in c(2)M cause a reduced frequency of meiotic crossing over due, in part, to how recombination events are resolved. Cytological evidence suggests that C(2)M is a component of the SC and is required for the assembly of C(3)G (a putative transverse filament of the SC) along the chromosomes. Additionally, C(2)M localizes along the chromosomes in the absence of C(3)G. Despite having a defect in C(3)G localization, c(2)M mutants unexpectedly affect crossing over less severely than a c(3)G mutant. There is virtually no crossing over in a c(3)G mutant, but c(2)M or c(2)M; c(3)G double mutants produce a substantial number of crossovers. The appearance of C(3)G-independent crossovers in c(2)M mutants suggests that C(2)M prevents recombination in the absence of complete SC formation.We have identified a new Drosophila SC component, C(2)M, that promotes the formation of crossovers. Furthermore, the appearance of C(3)G-independent crossovers in c(2)M mutants suggests a novel role in preventing recombination in the absence of complete SC.

Keywords

Male, Meiosis, Agricultural and Biological Sciences(all), Biochemistry, Genetics and Molecular Biology(all), Synaptonemal Complex, Mutation, Animals, Drosophila, Female, Crossing Over, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 10%
Top 10%
Top 10%
hybrid