Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.biorxiv....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions

Destabilization of the holo-DNA Polδ by loss of Pol32 confers conditional lethality that can be suppressed by stabilizing Pol31-Pol3 interaction

Authors: Motlagh Ndv; Motlagh Ndv; Susan M. Gasser; Susan M. Gasser; Delgoshaie N; Delgoshaie N; Kenji Shimada; +2 Authors

Destabilization of the holo-DNA Polδ by loss of Pol32 confers conditional lethality that can be suppressed by stabilizing Pol31-Pol3 interaction

Abstract

AbstractDNA Polymerase δ plays an essential role in genome replication and in the preservation of genome integrity. InS. cerevisiae, Polδ consists of three subunits: Pol3 (the catalytic subunit), Pol31 and Pol32. We have constructedpol31mutants by alanine substitution at conserved amino acids, and identified three alleles that do not confer any disadvantage on their own, but which suppress the cold-, HU- and MMS-hypersensitivity of yeast strains lacking Pol32. We have shown that Pol31 and Pol32 are both involved in translesion synthesis, error-free bypass synthesis, and in preservation of replication fork stability under conditions of HU arrest. We identified a solvent exposed loop in Pol31 defined by two alanine substitutions at T415 and W417. Whereas pol31-T4l5A compromises polymerase stability at stalled forks,pol31-W417A is able to suppress many, but not all, of the phenotypes arising frompol32Δ. ChIP analyses showed that the absence of Pol32 destabilizes Pole and Polα at stalled replication forks, but does not interfere with checkpoint kinase activation. We show that the Pol31-W417A-mediated suppression of replicationstress sensitivity inpol32Δ stems from enhanced interaction between Pol3 and Pol31, which stabilizes a functional Polδ.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average