Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 2003 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Genetics
Article . 2003
versions View all 2 versions

Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa

Authors: Hisashi, Tamaru; Xing, Zhang; Debra, McMillen; Prim B, Singh; Jun-ichi, Nakayama; Shiv I, Grewal; C David, Allis; +2 Authors

Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa

Abstract

Besides serving to package nuclear DNA, histones carry information in the form of a diverse array of post-translational modifications. Methylation of histones H3 and H4 has been implicated in long-term epigenetic 'memory'. Dimethylation or trimethylation of Lys4 of histone H3 (H3 Lys4) has been found in expressible euchromatin of yeasts and mammals. In contrast, methylation of Lys9 of histone H3 (H3 Lys9) has been implicated in establishing and maintaining the largely quiescent heterochromatin of mammals, yeasts, Drosophila melanogaster and plants. We have previously shown that a DNA methylation mutant of Neurospora crassa, dim-5 (defective in methylation), has a nonsense mutation in the SET domain of an H3-specific histone methyltransferase and that substitutions of H3 Lys9 cause gross hypomethylation of DNA. Similarly, the KRYPTONITE histone methyltransferase is required for full DNA methylation in Arabidopsis thaliana. We used biochemical, genetic and immunological methods to investigate the specific mark for DNA methylation in N. crassa. Here we show that trimethylated H3 Lys9, but not dimethylated H3 Lys9, marks chromatin regions for cytosine methylation and that DIM-5 specifically creates this mark.

Related Organizations
Keywords

Neurospora crassa, Lysine, Genes, Fungal, Histone-Lysine N-Methyltransferase, Methyltransferases, DNA Methylation, Methylation, Fungal Proteins, Histones, Mutation, Histone Methyltransferases, Protein Methyltransferases, DNA, Fungal, Protein Processing, Post-Translational

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    344
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
344
Top 1%
Top 1%
Top 1%