Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article . 2006
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Investigative Dermatology
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

K25 (K25irs1), K26 (K25irs2), K27 (K25irs3), and K28 (K25irs4) Represent the Type I Inner Root Sheath Keratins of the Human Hair Follicle

Authors: Langbein, Lutz; Rogers, Michael A.; Praetzel-Wunder, Silke; Helmke, Burkhard; Schirmacher, Peter; Schweizer, Jürgen;

K25 (K25irs1), K26 (K25irs2), K27 (K25irs3), and K28 (K25irs4) Represent the Type I Inner Root Sheath Keratins of the Human Hair Follicle

Abstract

The recent elucidation of the human type I keratin gene domain allowed the completion of the so far only partially characterized subcluster of type I keratin genes, KRT25-KRT28 (formerly KRT25A-KRT25D), representing the counterparts of the type II inner root sheath (IRS) keratin genes, KRT71-KRT74 (encoding proteins K71-K74, formerly K6irs1-K6irs4). Here, we describe the expression patterns of the type I IRS keratin proteins K25-K28 (formerly K25irs1-K25irs4) and their mRNAs. We found that K25 (K25irs1), K27 (K25irs3), and K28 (K25irs4) occur in the Henle layer, the Huxley layer, and in the IRS cuticle. Their expression extends from the bulb region up to the points of terminal differentiation of the three layers. In contrast, K26 (K25irs2) is restricted to the upper IRS cuticle. Apart from the three IRS layers, K25 (K25irs1), K27 (K25irs3), and K28 (K25irs4) are also present in the hair medulla. Based on previous, although controversial claims of the occurrence in the IRS of various "classical" epithelial keratins, we undertook a systematic study using antibodies against the presently described human epithelial and hair keratins and show that the type I keratins K25-K28 (K25irs1-K25irs4) and the type II keratins K71-K74 (K6irs1-K6irs4) represent the IRS keratins of the human hair follicle.

Keywords

Keratins, Type II, Genome, Human, Oligonucleotides, Cell Biology, Dermatology, Physical Chromosome Mapping, Biochemistry, Polymerase Chain Reaction, Antibodies, Evolution, Molecular, Keratins, Hair-Specific, Keratins, Type I, Humans, RNA, Messenger, Molecular Biology, Hair Follicle

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    81
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
81
Top 10%
Top 10%
Top 10%
hybrid