Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Gener...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of General Physiology
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1101/2023.0...
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 7 versions

Epilepsy-associatedSCN2A(NaV1.2) Variants Exhibit Diverse and Complex Functional Properties

Authors: Christopher H. Thompson; Franck Potet; Tatiana V. Abramova; Jean-Marc DeKeyser; Nora F. Ghabra; Carlos G. Vanoye; John J. Millichap; +1 Authors

Epilepsy-associatedSCN2A(NaV1.2) Variants Exhibit Diverse and Complex Functional Properties

Abstract

ABSTRACTPathogenic variants in neuronal voltage-gated sodium (NaV) channel genes includingSCN2A, which encodes NaV1.2, are frequently discovered in neurodevelopmental disorders with and without epilepsy.SCN2Ais also a high confidence risk gene for autism spectrum disorder (ASD) and nonsyndromic intellectual disability (ID). Previous work to determine the functional consequences ofSCN2Avariants yielded a paradigm in which predominantly gain-of-function (GoF) variants cause epilepsy whereas loss-of-function (LoF) variants are associated with ASD and ID. However, this framework is based on a limited number of functional studies conducted under heterogenous experimental conditions whereas most disease-associatedSCN2Avariants have not been functionally annotated. We determined the functional properties of more than 30SCN2Avariants using automated patch clamp recording to assess the analytical validity of this approach and to examine whether a binary classification of variant dysfunction is evident in a larger cohort studied under uniform conditions. We studied 28 disease-associated variants and 4 common population variants using two distinct alternatively spliced forms of NaV1.2 that were heterologously expressed in HEK293T cells. Multiple biophysical parameters were assessed on 5,858 individual cells. We found that automated patch clamp recording provided a valid high throughput method to ascertain detailed functional properties of NaV1.2 variants with concordant findings for a subset of variants that were previously studied using manual patch clamp. Additionally, many epilepsy-associated variants in our study exhibited complex patterns of gain- and loss-of-function properties that are difficult to classify overall by a simple binary scheme. The higher throughput achievable with automated patch clamp enables study of a larger number of variants, greater standardization of recording conditions, freedom from operator bias, and enhanced experimental rigor valuable for accurate assessment of NaVchannel variant dysfunction. Together, this approach will enhance our ability to discern relationships between variant channel dysfunction and neurodevelopmental disorders.

Keywords

Epilepsy, HEK293 Cells, NAV1.2 Voltage-Gated Sodium Channel, Phenotype, Autism Spectrum Disorder, Neurodevelopmental Disorders, Humans, Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 1%
Green
Published in a Diamond OA journal