Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Behavioural Brain Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Behavioural Brain Research
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

A novel role for receptor like protein tyrosine phosphatase zeta in modulation of sensorimotor responses to noxious stimuli: Evidences from knockout mice studies

Authors: David, Lafont; Tiziana, Adage; Béatrice, Gréco; Paola, Zaratin;

A novel role for receptor like protein tyrosine phosphatase zeta in modulation of sensorimotor responses to noxious stimuli: Evidences from knockout mice studies

Abstract

Receptor like protein tyrosine phosphatase zeta (RPTPz) (also known as RPTPbeta or PTPxi) is a tyrosine phosphatase widely expressed in the nervous system, thought to play a role in cell-cell communication. However, knocking out RPTPz does not induce major neural abnormalities in mice. In order to better assess the potential role of RPTPz in various neural functions, we performed a comprehensive behavioural characterization of CNS/PNS functions in knockout mice (RPTPz -/-) confirming previously observed impaired working memory functions and further demonstrating an altered motor coordination. Moreover, RPTPz -/- mice displayed reduced responses to moderate thermal and tactile stimuli, both in baseline and under inflammatory conditions. These findings assign novel functional role of RPTPz in motor coordination and nociception.

Keywords

Male, Mice, Knockout, Reflex, Startle, Receptor-Like Protein Tyrosine Phosphatases, Class 5, Body Weight, Neural Conduction, Brain, Drinking Behavior, Pain, Feeding Behavior, Motor Activity, Evoked Potentials, Motor, Mice, Memory, Seizures, Physical Stimulation, Body Composition, Animals, Maze Learning, Muscle, Skeletal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Average
Average