Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 1991 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
Molecular and Cellular Biology
Article . 1991 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Pheromone Response Elements Are Necessary and Sufficient for Basal and Pheromone-Induced Transcription of the FUS1 Gene of Saccharomyces cerevisiae

Authors: D C, Hagen; G, McCaffrey; G F, Sprague;

Pheromone Response Elements Are Necessary and Sufficient for Basal and Pheromone-Induced Transcription of the FUS1 Gene of Saccharomyces cerevisiae

Abstract

The FUS1 gene of Saccharomyces cerevisiae is transcribed in a and alpha cells, not in a/alpha diploids, and its transcription increases dramatically when haploid cells are exposed to the appropriate mating pheromone. In addition, FUS1 transcription is absolutely dependent on STE4, STE5, STE7, STE11, and STE12, genes thought to encode components of the pheromone response pathway. We now have determined that the pheromone response element (PRE), which occurs in four copies within the FUS1 upstream region, functions as the FUS1 upstream activation sequence (UAS) and is responsible for all known aspects of FUS1 regulation. In particular, deletion of 55 bp that includes the PREs abolished all transcription, and a 139-bp fragment that includes the PREs conferred FUS1-like expression to a CYC1-lacZ reporter gene. Moreover, three or four copies of a synthetic PRE closely mimicked the activity conferred by the 139-bp fragment, and even a single copy of PRE conferred a trace of activity that was haploid specific and pheromone inducible. In the FUS1 promoter context, four copies of the synthetic PRE inserted at the site of the 55-bp deletion restored full FUS1 transcription. Sequences upstream and downstream from the PRE cluster were important for maximal PRE-directed expression but, by themselves, did not have UAS activity. Other yeast genes with PREs, e.g., STE2 and BAR1, are more modestly inducible and have additional UAS elements contributing to the overall activity. In the FUS1 promoter, the PREs apparently act alone to confer activity that is highly stimulated by pheromone.

Related Organizations
Keywords

Base Sequence, Genotype, Transcription, Genetic, Genes, Fungal, Molecular Sequence Data, Saccharomyces cerevisiae, beta-Galactosidase, Diploidy, Pheromones, Escherichia coli, Cloning, Molecular, Mating Factor, Oligonucleotide Probes, Peptides, Plasmids, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    132
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
132
Top 10%
Top 1%
Top 10%
bronze