Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Genetics a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Genetics and Metabolism
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Analyses of Proteins Involved in Vesicular Trafficking in Platelets of Mouse Models of Hermansky Pudlak Syndrome

Authors: Ping He; Richard T. Swank; Elliott K. Jang; Beverly Richards-Smith; Edward K. Novak; Richard J. Haslam; Sidney W. Whiteheart; +1 Authors

Analyses of Proteins Involved in Vesicular Trafficking in Platelets of Mouse Models of Hermansky Pudlak Syndrome

Abstract

Hermansky Pudlak syndrome (HPS) is an autosomal recessive inherited disorder characterized by defects in synthesis and/or secretion of three related subcellular organelles: melanosomes, platelet-dense granules, and lysosomes. In the mouse, mutant forms of any of 14 separate genes result in an HPS-like phenotype. The mouse pearl and mocha genes encode subunits of the AP3 adaptor protein complex, confirming that HPS mutations involve proteins regulating intracellular vesicular trafficking. Therefore, expression of several additional proteins involved in vesicular transport was examined by immunoblotting of platelet extracts from HPS mutant and control mice. Platelet levels of SCAMPS (secretory carrier membrane proteins), Rab11, Rab31, NSF (N-ethylmaleimide-sensitive fusion protein), syntaxin 2, syntaxin 4, munc18c, and p115/TAP (p115/transcytosis-associated protein) were not significantly altered in several different HPS mutants. However, gunmetal (gm/gm) platelets contained decreased amounts of SNAP-23. The Snap23 gene was mapped to mouse chromosome 5, demonstrating it cannot encode the gm gene, which maps to chromosome 14. It is likely therefore that the gm gene functions upstream of SNAP-23 in vesicular trafficking.

Keywords

Blood Platelets, Intracellular Signaling Peptides and Proteins, Chromosome Mapping, Golgi Matrix Proteins, Membrane Proteins, Biological Transport, Cytoplasmic Granules, Mice, Mutant Strains, Mice, Inbred C57BL, Muridae, Disease Models, Animal, Mice, Munc18 Proteins, Albinism, Oculocutaneous, GTP-Binding Proteins, Mice, Inbred DBA, Antigens, Surface, Animals, Humans, Carrier Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Top 10%
Top 10%