Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Article . 2003 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Phosphatases in apoptosis: to be or not to be, PP2A is in the heart of the question

Authors: Van Hoof, Christine; Goris, Jozef;

Phosphatases in apoptosis: to be or not to be, PP2A is in the heart of the question

Abstract

Protein phosphatase type 2A (PP2A) is a major Ser/Thr phosphatase involved in several cellular signal transduction pathways. In this review, we will focus on recent progress concerning the role of PP2A in apoptotic signalling. Since PP2A activates pro-apoptotic and inhibits anti-apoptotic proteins of the Bcl-2 family, we conclude that PP2A has a positive regulatory function in apoptosis. However, in Drosophila, a specific subset of the PP2A holoenzyme family, containing B'/PR61 as third regulatory subunit, is inhibitory for apoptosis, suggesting different regulatory mechanisms and substrates in different species. Moreover, PP2A acts not only upstream as a regulator of the apoptotic signal transduction pathway but also downstream as a substrate of effector caspases. Hence, PP2A is involved in the regulation as well as in the cellular response of apoptosis. Probably, various PP2A holoenzymes with distinct regulatory subunits specifically target different apoptotic substrates. This could explain the implication of PP2A at several levels of the apoptotic signal transduction pathway. Finally, some viral proteins such as adenovirus E4orf4 and simian virus small t target PP2A to alter its activity, resulting in induction of apoptosis as a regulatory mechanism to enhance virus spread.

Keywords

Viral protein, Apoptosis, Cell Biology, Caspase, PP2A, Protein phosphatase, Bcl-2 family, Proto-Oncogene Proteins c-bcl-2, Caspases, Phosphoprotein Phosphatases, Animals, Humans, bcl-Associated Death Protein, Carrier Proteins, Molecular Biology, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    137
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
137
Top 10%
Top 10%
Top 1%
hybrid