Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article . 2011
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Investigative Dermatology
Article . 2011 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

CD44 Regulates Tight-Junction Assembly and Barrier Function

Authors: Martin J. Behne; Ingrid Moll; Marek Haftek; Johanna M. Brandner; Carien M. Niessen; Mikio Furuse; Nina Kirschner;

CD44 Regulates Tight-Junction Assembly and Barrier Function

Abstract

Upon barrier disturbance, adult CD44 knockout (KO) mice show delayed recovery of epidermal barrier function. This correlates with the loss of apical polarization of lamellar body (LB) secretion. As tight junctions (TJs) are crucial for barrier function and regulate polarized targeting of vesicles, we hypothesized that CD44 regulates TJs and associated cell polarity complexes, which in turn contributes to altered skin barrier function in CD44 KO mice. We show a delay in embryonic barrier formation associated with a loss of apical LB localization in CD44 KO mice, which correlates with alterations in TJ proteins and Par3. Simultaneously, the activity of Rac1, a major regulator of TJ barrier function, was reduced. Importantly, normalization of barrier function at E18.5 coincided with the recovery of these proteins. Tape-stripping experiments revealed that the loss of CD44 also affected TJ proteins upon induced disturbance of the barrier in adult mice. In CD44 KO keratinocytes, cell polarization and TJ barrier function were impaired. An alteration of differentiation markers was also observed, but was less pronounced than alterations of TJ proteins. Taken together, the results reveal an important function for CD44 in the assembly and function of TJs, suggesting their involvement in the skin barrier phenotype of CD44 KO mice.

Keywords

Keratinocytes, Male, Gene Expression, Cell Cycle Proteins, Dermatology, Biochemistry, Mice, Adjuvants, Immunologic, Animals, Guanine Nucleotide Exchange Factors, Hyaluronic Acid, Molecular Biology, Cells, Cultured, Adaptor Proteins, Signal Transducing, Mice, Knockout, Neuropeptides, Cell Polarity, Cell Differentiation, Cell Biology, Hyaluronan Receptors, Epidermal Cells, Female, Epidermis, Cell Adhesion Molecules

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 10%
Top 10%
Top 10%
hybrid