Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 1999
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 1999 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Current Biology
Article . 1999
versions View all 4 versions

pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation

Authors: Novitch, Bennett G.; Spicer, Douglas B.; Kim, Paul S.; Cheung, Wang L.; Lassar, Andrew B.;

pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation

Abstract

The onset of differentiation-specific gene expression in skeletal muscle is coupled to permanent withdrawal from the cell cycle. The retinoblastoma tumor-suppressor protein (pRb) is a critical regulator of this process, required for both cell-cycle arrest in G0 phase and high-level expression of late muscle-differentiation markers. Although the cell-cycle defects that are seen in pRb-deficient myocytes can be explained by the well-described function of pRb as a negative regulator of the transition from G1 to S phase, it remains unclear how pRb positively affects late muscle-gene expression.Here, we show that the myogenic defect in Rb-/- cells corresponds to a deficiency in the activity of the transcription factor MEF2. Without pRb, MyoD induces the accumulation of nuclear-localized MEF2 that is competent to bind DNA yet transcriptionally inert. When pRb is present, MyoD stimulates the function of the MEF2C transcriptional activation domain and the activity of endogenous MEF2-type factors. Co-transfection of MyoD together with an activated form of MEF2C containing the Herpesvirus VP16 transcriptional activation domain partially bypasses the requirement for pRb and induces late muscle-gene expression in replicating cells. This ectopic myogenesis is nevertheless significantly augmented by co-expression of an E2F1-pRb chimeric protein that blocks the cell cycle.These findings indicate that pRb promotes the expression of late-stage muscle-differentiation markers by both inhibiting cell-cycle progression and cooperating with MyoD to promote the transcriptional activation activity of MEF2.

Keywords

Cell Nucleus, Binding Sites, Agricultural and Biological Sciences(all), Biochemistry, Genetics and Molecular Biology(all), MEF2 Transcription Factors, Recombinant Fusion Proteins, Cell Cycle, Cell Differentiation, Herpes Simplex Virus Protein Vmw65, DNA, Resting Phase, Cell Cycle, Retinoblastoma Protein, DNA-Binding Proteins, Mice, Gene Expression Regulation, Myogenic Regulatory Factors, Serine, Animals, Muscle, Skeletal, Promoter Regions, Genetic, Creatine Kinase, MyoD Protein

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    178
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
178
Top 10%
Top 10%
Top 1%
hybrid