Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Mechanisms Regulating Adipocyte Expression of Resistin

Authors: Helen B. Hartman; Chiraj K. Dalal; Mitchell A. Lazar; Keala X. Tyler; Xiao Hu;

Mechanisms Regulating Adipocyte Expression of Resistin

Abstract

Resistin, also known as Adipocyte Secreted Factor (ADSF) and Found in Inflammatory Zone 3 (FIZZ3), is a mouse protein with potential roles in insulin resistance and adipocyte differentiation. The resistin gene is expressed almost exclusively in adipocytes. Here we show that a proximal 264-base pair fragment of the mouse resistin promoter is sufficient for expression in adipocytes. Ectopic expression of the adipogenic transcription factor CCAAT/enhancer-binding protein (C/EBPalpha) was sufficient for expression in non-adipogenic cells. C/EBPalpha binds specifically to a site that is essential for expression of the resistin promoter. Chromatin immunoprecipitation studies of the endogenous gene demonstrated adipocyte-specific association of C/EBPalpha with the proximal resistin promoter in adipocytes but not preadipocytes. C/EBPalpha binding was associated with the recruitment of coactivators p300 and CREB-binding protein and a dramatic increase in histone acetylation in the vicinity of the resistin promoter. The antidiabetic thiazolidinedione (TZD) drug rosiglitazone reduced resistin expression with an ED(50) similar to its K(d) for binding to peroxisome proliferator activated receptor gamma (PPARgamma). Other TZD- and non-TZD PPARgamma ligands also down-regulated resistin expression. However, no functional PPARgamma binding site was found within 6.2 kb of the transcriptional start site, suggesting that if PPARgamma is involved, it is either acting at a long distance from the start site, in an intron, or indirectly. Nevertheless, rosiglitazone treatment selectively decreased histone acetylation at the resistin promoter without a change in occupation by C/EBPalpha, CREB-binding protein, or p300. Thus, adipocyte specificity of resistin gene expression is because of C/EBPalpha binding, leading to the recruitment of transcriptional coactivators and histone acetylation that is characteristic of an active chromatin environment. TZD reduces resistin gene expression at least in part by reducing histone acetylation associated with the binding of C/EBPalpha in mature adipocytes.

Related Organizations
Keywords

Binding Sites, Base Sequence, Dose-Response Relationship, Drug, Genetic Vectors, Down-Regulation, Blotting, Northern, CREB-Binding Protein, Chromatin, Introns, Cell Line, Histones, Fibrinolytic Agents, Gene Expression Regulation, Hormones, Ectopic, Adipocytes, CCAAT-Enhancer-Binding Protein-alpha, Animals, Humans, Intercellular Signaling Peptides and Proteins, E1A-Associated p300 Protein

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    136
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
136
Top 10%
Top 1%
Top 1%
gold