Absence of microRNA-21 does not reduce muscular dystrophy in mouse models of LAMA2-CMD
Absence of microRNA-21 does not reduce muscular dystrophy in mouse models of LAMA2-CMD
MicroRNAs (miRNAs) are short non-coding RNAs that modulate gene expression post-transcriptionally. Current evidence suggests that miR-21 plays a significant role in the progression of fibrosis in muscle diseases. Laminin-deficient congenital muscular dystrophy (LAMA2-CMD) is a severe form of congenital muscular dystrophy caused by mutations in the gene encoding laminin α2 chain. Mouse models dy3K/dy3K and dy2J/dy2J, respectively, adequately mirror severe and milder forms of LAMA2-CMD. Both human and mouse LAMA2-CMD muscles are characterized by extensive fibrosis and considering that fibrosis is the final step that destroys muscle during the disease course, anti-fibrotic therapies may be effective strategies for prevention of LAMA2-CMD. We have previously demonstrated a significant up-regulation of the pro-fibrotic miR-21 in dy3K/dy3K and dy2J/dy2J skeletal muscle. Hence, the objective of this study was to explore if absence of miR-21 reduces fibrogenesis and improves the phenotype of LAMA2-CMD mice. Thus, we generated dy3K/dy3K and dy2J/dy2J mice devoid of miR-21 (dy3K/miR-21 and dy2J/miR-21 mice, respectively). However, the muscular dystrophy phenotype of dy3K/miR-21 and dy2J/miR-21 double knock-out mice was not improved compared to dy3K/dy3K or dy2J/dy2J mice, respectively. Mice displayed the same body weight, dystrophic muscles (with fibrosis) and impaired muscle function. These data indicate that miR-21 may not be involved in the development of fibrosis in LAMA2-CMD.
- University of Minnesota Medical Center United States
- Lund University Sweden
Male, Mice, Knockout, Science, Q, R, Muscular Dystrophy, Animal, Mice, Inbred C57BL, Disease Models, Animal, Mice, MicroRNAs, Phenotype, Medicine, Animals, Female, Laminin, Muscle, Skeletal, Research Article
Male, Mice, Knockout, Science, Q, R, Muscular Dystrophy, Animal, Mice, Inbred C57BL, Disease Models, Animal, Mice, MicroRNAs, Phenotype, Medicine, Animals, Female, Laminin, Muscle, Skeletal, Research Article
4 Research products, page 1 of 1
- 2016IsAmongTopNSimilarDocuments
- 2005IsAmongTopNSimilarDocuments
- 2001IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
