Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2010 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

cPLA2 Regulates the Expression of Type I Interferons and Intracellular Immunity to Chlamydia trachomatis

Authors: Mark J, Vignola; David F, Kashatus; Gregory A, Taylor; Christopher M, Counter; Raphael H, Valdivia;

cPLA2 Regulates the Expression of Type I Interferons and Intracellular Immunity to Chlamydia trachomatis

Abstract

Infection with the obligate bacterial intracellular pathogen Chlamydia trachomatis leads to the sustained activation of the small GTPase RAS and many of its downstream signaling components. In particular, the mitogen-activated protein kinase ERK and the calcium-dependent phospholipase cPLA(2) are activated and are important for the onset of inflammatory responses. In this study we tested if activation of ERK and cPLA(2) occurred as a result of RAS signaling during infection and determined the relative contribution of these signaling components to chlamydial replication and survival. We provide genetic and pharmacological evidence that during infection RAS, ERK, and, to a lesser extent, cPLA(2) activation are uncoupled, suggesting that Chlamydia activates individual components of this signaling pathway in a non-canonical manner. In human cell lines, inhibition of ERK or cPLA(2) signaling did not adversely impact C. trachomatis replication. In contrast, in murine cells, inhibition of ERK and cPLA(2) played a significant protective role against C. trachomatis. We determined that cPLA(2)-deficient murine cells are permissive for C. trachomatis replication because of their impaired expression of beta interferon and the induction of immunity-related GTPases (IRG) important for the containment of intracellular pathogens. Furthermore, the MAPK p38 was primarily responsible for cPLA(2) activation in Chlamydia-infected cells and IRG expression. Overall, these findings define a previously unrecognized role for cPLA(2) in the induction of cell autonomous cellular immunity to Chlamydia and highlight the many non-canonical signaling pathways engaged during infection.

Related Organizations
Keywords

Chlamydia trachomatis, Gene Expression Regulation, Bacterial, Models, Biological, Gene Expression Regulation, Enzymologic, Cell Line, Kinetics, Mice, Phospholipases A2, Microscopy, Fluorescence, Interferon Type I, ras Proteins, Animals, Humans, Chlamydia, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
gold