Powered by OpenAIRE graph

LncRNA NEAT1 Accelerates the Proliferation, Oxidative Stress, Inflammation, and Fibrosis and Suppresses the Apoptosis Through the miR-423-5p/GLIPR2 Axis in Diabetic Nephropathy

Authors: Xu, Wu; Deyong, Fan; Bo, Chen;

LncRNA NEAT1 Accelerates the Proliferation, Oxidative Stress, Inflammation, and Fibrosis and Suppresses the Apoptosis Through the miR-423-5p/GLIPR2 Axis in Diabetic Nephropathy

Abstract

Abstract: Diabetic nephropathy (DN) is a serious microvascular complication of diabetes. The aim of our study was to investigate the potential mechanism in DN progression. SV40 mesangial cells (MES)13 cells were exposed to high concentration of glucose (HG: 30 mmol/L) for 48 hours to establish a DN cell model in vitro. Bioinformatic software StarBase was adopted to establish the long noncoding RNA (lncRNA)-microRNA–messenger RNA axis. Dual-luciferase reporter assay, RNA immunoprecipitation assay, and RNA pull-down assay were performed to verify intermolecular interaction. LncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) was overexpressed in the serum of patients with DN. HG time-dependently upregulated NEAT1 levels, and HG promotes cell proliferation, oxidative stress, inflammation, and fibrosis and suppressed cell apoptosis in SV40 MES13 cells partly through upregulating NEAT1. NEAT1 functioned as a molecular sponge of miR-423-5p, and NEAT1 silencing-mediated effects were partly overturned by miR-423-5p interference in HG-induced SV40 MES13 cells. Glioma pathogenesis related-2 (GLIPR2) was a target of miR-423-5p. GLIPR2 overexpression in normal concentration of glucose (NG)-induced SV40 MES13 cells partly simulated HG-induced effects. GLIPR2 overexpression partly reversed NEAT1 interference–induced effects in HG-induced SV40 MES13 cells. LncRNA NEAT1 contributed to HG-induced DN progression through the miR-423-5p/GLIPR2 axis in vitro. NEAT1/miR-423-5p/GLIPR2 axis might be a potential target for DN treatment.

Related Organizations
Keywords

Inflammation, Male, Apoptosis, Glioma, Fibrosis, MicroRNAs, Oxidative Stress, Glucose, Diabetes Mellitus, Humans, Diabetic Nephropathies, Female, RNA, Long Noncoding, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%