Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Immunologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Immunology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Immunology
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Immunology
Article . 2014
versions View all 2 versions

N‐Ethyl‐N‐nitrosourea mutagenesis in the mouse provides strong genetic and in vivo evidence for the role of the Caspase Recruitment Domain (CARD) of CARD‐MAGUK1 in T regulatory cell development

Authors: Sophie Rutschmann; Emma M. Salisbury; Lihui Wang; Onjee Choi; Philip G. Ashton-Rickardt;

N‐Ethyl‐N‐nitrosourea mutagenesis in the mouse provides strong genetic and in vivo evidence for the role of the Caspase Recruitment Domain (CARD) of CARD‐MAGUK1 in T regulatory cell development

Abstract

SummaryNatural regulatory T (nTreg) cells generated in the thymus are essential throughout life for the maintenance of T‐cell homeostasis and the prevention of autoimmunity. T‐cell receptor (TCR)/CD28‐mediated activation of nuclear factor‐κB and (J)un (N)‐terminal kinase pathways is known to play a key role in nTreg cell development but many of the predicted molecular interactions are based on extrapolations from non‐Treg cell TCR stimulation with non‐physiological ligands. For the first time, we provide strong genetic evidence of a scaffold function for the Caspase Recruitment Domain (CARD) of the TCR signalling protein CARD‐MAGUK1 (CARMA1) in nTreg cell development in vivo. We report two, new, N‐ethyl‐N‐nitrosourea‐derived mutant mice, Vulpo and Zerda, with a profound block in the development of nTreg cells in the thymus as well as impaired inducible Treg cell differentiation in the periphery. Despite independent heritage, both mutants harbour different point mutations in the CARD of the CARMA1 protein. Mutations in vulpo and zerda do not affect expression levels of CARMA1 but still impair signalling through the TCR due to defective downstream Bcl‐10 recruitment by the mutated CARD of CARMA1. Phenotypic differences observed between Vulpo and Zerda mutants suggest a role for the CARD of CARMA1 independent of Bcl‐10 activation of downstream pathways. We conclude that our forward genetic approach demonstrates a critical role for the CARD function of CARMA1 in Treg cell development in vivo.

Related Organizations
Keywords

Heredity, Genotype, Receptors, Antigen, T-Cell, Autoimmunity, T-Lymphocytes, Regulatory, Mice, Animals, Cells, Cultured, Adaptor Proteins, Signal Transducing, Cell Differentiation, B-Cell CLL-Lymphoma 10 Protein, Mice, Mutant Strains, Protein Structure, Tertiary, CARD Signaling Adaptor Proteins, Mice, Inbred C57BL, Phenotype, Ethylnitrosourea, Mutation, Mutagens, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
bronze