Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nature Neurosciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Neuroscience
Article . 2008 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Single-neuron labeling with inducible Cre-mediated knockout in transgenic mice

Authors: Paul, Young; Li, Qiu; Dongqing, Wang; Shengli, Zhao; James, Gross; Guoping, Feng;

Single-neuron labeling with inducible Cre-mediated knockout in transgenic mice

Abstract

To facilitate a functional analysis of neuronal connectivity in a mammalian nervous system that is tightly packed with billions of cells, we developed a new technique that uses inducible genetic manipulations in fluorescently labeled single neurons in mice. Our technique, single-neuron labeling with inducible Cre-mediated knockout (SLICK), is achieved by coexpressing a drug-inducible form of Cre recombinase and a fluorescent protein in a small subsets of neurons, thus combining the powerful Cre recombinase system for conditional genetic manipulation with fluorescent labeling of single neurons for imaging. Here, we demonstrate efficient inducible genetic manipulation in several types of neurons using SLICK. Furthermore, we applied SLICK to eliminate synaptic transmission in a small subset of neuromuscular junctions. Our results provide evidence for the long-term stability of inactive neuromuscular synapses in adult animals and demonstrate a Cre-loxP compatible system for dissecting gene functions in single identifiable neurons.

Related Organizations
Keywords

Central Nervous System, Mice, Knockout, Neurons, Potassium Channels, Integrases, Green Fluorescent Proteins, Estrogen Antagonists, Gene Expression, Mice, Transgenic, Nerve Tissue Proteins, Potassium Channels, Sodium-Activated, Mice, Inbred C57BL, Luminescent Proteins, Mice, Tamoxifen, Genes, Reporter, Ganglia, Spinal, Animals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    147
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
147
Top 1%
Top 10%
Top 10%
bronze