Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulationarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation
Article
Data sources: UnpayWall
Circulation
Article . 2002 . Peer-reviewed
Data sources: Crossref
Circulation
Article . 2002
versions View all 2 versions

Polymorphism in the 5′-Flanking Region of Human Glutamate-Cysteine Ligase Modifier Subunit Gene Is Associated With Myocardial Infarction

Authors: Shin-ichi, Nakamura; Kiyotaka, Kugiyama; Seigo, Sugiyama; Shinji, Miyamoto; Shun-ichi, Koide; Hironobu, Fukushima; Osamu, Honda; +2 Authors

Polymorphism in the 5′-Flanking Region of Human Glutamate-Cysteine Ligase Modifier Subunit Gene Is Associated With Myocardial Infarction

Abstract

Background — Human glutamate-cysteine ligase (GCL) is a rate-limiting enzyme for the synthesis of glutathione that plays a crucial role in antioxidant defense mechanisms in most mammalian cells, including vascular cells. Oxidants transcriptionally upregulate GCL genes for glutathione synthesis, providing a protective mechanism against oxidative stress-induced cellular dysfunction. This study examined the hypothesis that variation in the GCL genes may be associated with coronary artery disease in which oxidative stress plays a pathogenetic role. Methods and Results — We searched for the common variants in the 5′-flanking region of the GCL modifier subunit (GCLM) gene in patients with myocardial infarction (MI). We found a polymorphism (−588C/T) in which the T allele showed lower promoter activity (40% to 50% of C allele) in response to oxidants in the luciferase reporter gene assay. Allele frequencies were determined by polymerase chain reaction-based analysis of restriction fragment length polymorphism in 429 patients with MI and 428 control subjects (as defined by angiography) in Kumamoto Prefecture, Japan. The frequency of the T polymorphism was significantly higher in the MI group than in the control group (CT and TT genotypes: 31.5% in MI group versus 19.2% in control group; P <0.001). In multiple logistic regression analysis, the T polymorphism was a risk factor for MI independent of traditional coronary artery disease risk factors (odds ratio, 1.98; 95% confidence interval, 1.38 to 2.83; P <0.001). Conclusions — These findings suggest that the −588T polymorphism of the GCLM gene may suppress GCLM gene induction in response to oxidants and that it is a genetic risk factor for MI.

Keywords

Male, Transcriptional Activation, Polymorphism, Genetic, Genotype, 5' Flanking Region, Glutamate-Cysteine Ligase, Macrophages, Myocardial Infarction, Middle Aged, Glutathione, Monocytes, Cell Line, Protein Subunits, Humans, Female, Genetic Predisposition to Disease, RNA, Messenger, Promoter Regions, Genetic, Cells, Cultured, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    153
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
153
Top 10%
Top 10%
Top 10%
bronze