Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2000 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

c-Jun NH2-terminal Kinase Targeting and Phosphorylation of Heat Shock Factor-1 Suppress Its Transcriptional Activity

Authors: Wojciech Frejtag; Bin He; Rujuan Dai; Yan Zhang; Nahid F. Mivechi;

c-Jun NH2-terminal Kinase Targeting and Phosphorylation of Heat Shock Factor-1 Suppress Its Transcriptional Activity

Abstract

The mammalian heat shock transcription factor HSF-1 regulates the expression of the heat shock proteins, molecular chaperones that are involved in cellular processes from higher order assembly to protein degradation. HSF-1 is a phosphorylated monomer under physiological growth conditions and is located mainly in the cytoplasm. Upon activation by a variety of environmental stresses, HSF-1 is translocated into the nucleus, forms trimers, acquires DNA binding activity, is hyperphosphorylated, appears as punctate granules, and increases transcriptional activity of target genes. As cells recover from stress, the punctate granules gradually disappear, and HSF-1 appears in a diffused staining pattern in the cytoplasm and nucleus. We have previously shown that the mitogen-activated protein kinase ERK phosphorylates and suppresses HSF-1-driven transcription. Here, we show that c-Jun NH(2)-terminal kinase (JNK) also phosphorylates and inactivates HSF-1. Overexpression of JNK facilitates the rapid disappearance of HSF-1 punctate granules after heat shock. Similar to ERK, JNK binds to HSF-1 in the conserved mitogen-activated protein kinases binding motifs and phosphorylates HSF-1 in the regulatory domain. The overexpression of an HSF-1-green fluorescent protein fusion construct lacking JNK phosphorylation sites causes this HSF-1 mutant to form nuclear granules that remain longer in the nucleus after heat shock. Taken together, these findings indicate that JNK phosphorylates HSF-1 and suppresses its transcriptional activity by rapidly clearing HSF-1 from the sites of transcription.

Keywords

Transcription, Genetic, Molecular Sequence Data, JNK Mitogen-Activated Protein Kinases, DNA-Binding Proteins, Enzyme Activation, Structure-Activity Relationship, Heat Shock Transcription Factors, Tumor Cells, Cultured, Humans, Amino Acid Sequence, Mitogen-Activated Protein Kinases, Phosphorylation, Fluorescent Antibody Technique, Indirect, Heat-Shock Proteins, HeLa Cells, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    128
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
128
Top 10%
Top 10%
Top 10%
gold