Nitrate-responsive NIN-like protein transcription factors perform unique and redundant roles in Arabidopsis
doi: 10.1093/jxb/erab246
pmid: 34050740
Nitrate-responsive NIN-like protein transcription factors perform unique and redundant roles in Arabidopsis
Abstract Upon sensing nitrate, NODULE INCEPTION (NIN)-like protein (NLP) transcription factors alter gene expression to promote nitrate uptake and utilization. Of the nine NLPs in Arabidopsis, the physiological roles of only three NLPs (NLP6–NLP8) have been characterized to date. To evaluate the unique and redundant roles of Arabidopsis NLPs, we assessed the phenotypes of single and higher order nlp mutants. Unlike other nlp single mutants, nlp2 and nlp7 single mutants showed a reduction in shoot fresh weight when grown in the presence of nitrate as the sole nitrogen source, indicating that NLP2, like NLP7, plays a major role in vegetative growth. Interestingly, the growth defect of nlp7 recovered upon the supply of ammonium or glutamine, whereas that of nlp2 did not. Furthermore, complementation assays using chimeric constructs revealed that the coding sequence, but not the promoter region, of NLP genes was responsible for the differences between nlp2 and nlp7 single mutant phenotypes, suggesting differences in protein function. Importantly, nitrate utilization was almost completely abolished in the nlp septuple mutant (nlp2 nlp4 nlp5 nlp6 nlp7 nlp8 nlp9), suggesting that NLPs other than NLP2 and NLP7 also assist in the regulation of nitrate-inducible gene expression and nitrate-dependent promotion of vegetative growth in Arabidopsis.
Nitrates, Arabidopsis Proteins, Gene Expression Regulation, Plant, Arabidopsis, Signal Transduction, Transcription Factors
Nitrates, Arabidopsis Proteins, Gene Expression Regulation, Plant, Arabidopsis, Signal Transduction, Transcription Factors
1 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).60 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
