Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Essays in Biochemist...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Essays in Biochemistry
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemistry
Article . 2022 . Peer-reviewed
versions View all 5 versions

Selective autophagy: adding precision in plant immunity

Authors: Jia Xuan Leong; Gautier Langin; Suayib Üstün;

Selective autophagy: adding precision in plant immunity

Abstract

Abstract Plant immunity is antagonized by pathogenic effectors during interactions with bacteria, viruses or oomycetes. These effectors target core plant processes to promote infection. One such core plant process is autophagy, a conserved proteolytic pathway involved in ensuring cellular homeostasis. It involves the formation of autophagosomes around proteins destined for autophagic degradation. Many cellular components from organelles, aggregates, inactive or misfolded proteins have been found to be degraded via autophagy. Increasing evidence points to a high degree of specificity during the targeting of these components, strengthening the idea of selective autophagy. Selective autophagy receptors bridge the gap between target proteins and the forming autophagosome. To achieve this, the receptors are able to recognize specifically their target proteins in a ubiquitin-dependent or -independent manner, and to bind to ATG8 via canonical or non-canonical ATG8-interacting motifs. Some receptors have also been shown to require oligomerization to achieve their function in autophagic degradation. We summarize the recent advances in the role of selective autophagy in plant immunity and highlight NBR1 as a key player. However, not many selective autophagy receptors, especially those functioning in immunity, have been characterized in plants. We propose an in silico approach to identify novel receptors, by screening the Arabidopsis proteome for proteins containing features theoretically needed for a selective autophagy receptor. To corroborate these data, the transcript levels of these proteins during immune response are also investigated using public databases. We further highlight the novel perspectives and applications introduced by immunity-related selective autophagy studies, demonstrating its importance in research.

Related Organizations
Keywords

Arabidopsis Proteins, Arabidopsis, Autophagosomes, Autophagy, Plant Biology, Proteins, Plant Immunity, Plants, Carrier Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Green
hybrid