Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation
Authors: S, Keeney; M J, Neale;
doi: 10.1042/bst0340523
pmid: 16856850
Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation
Abstract
Homologous recombination is essential for accurate chromosome segregation during meiosis in most sexual organisms. Meiotic recombination is initiated by the formation of DSBs (DNA double-strand breaks) made by the Spo11 protein. We review here recent findings pertaining to protein–protein interactions important for DSB formation, the mechanism of an early step in the processing of Spo11-generated DSBs, and regulation of DSB formation by protein kinases.
Related Organizations
- Kettering University United States
- Memorial Sloan Kettering Cancer Center United States
Keywords
Cell Nucleus, Recombination, Genetic, Meiosis, Animals, DNA, DNA Damage, Protein Binding
Cell Nucleus, Recombination, Genetic, Meiosis, Animals, DNA, DNA Damage, Protein Binding
10 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).180 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
180
Top 10%
Top 10%
Top 1%
Fields of Science (3) View all
Fields of Science
