Powered by OpenAIRE graph

Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation

Authors: S, Keeney; M J, Neale;

Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation

Abstract

Homologous recombination is essential for accurate chromosome segregation during meiosis in most sexual organisms. Meiotic recombination is initiated by the formation of DSBs (DNA double-strand breaks) made by the Spo11 protein. We review here recent findings pertaining to protein–protein interactions important for DSB formation, the mechanism of an early step in the processing of Spo11-generated DSBs, and regulation of DSB formation by protein kinases.

Related Organizations
Keywords

Cell Nucleus, Recombination, Genetic, Meiosis, Animals, DNA, DNA Damage, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    180
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
180
Top 10%
Top 10%
Top 1%