Glyceraldehyde-3-phosphate Dehydrogenase Interacts with Rab2 and Plays an Essential Role in Endoplasmic Reticulum to Golgi Transport Exclusive of Its Glycolytic Activity
pmid: 15485821
Glyceraldehyde-3-phosphate Dehydrogenase Interacts with Rab2 and Plays an Essential Role in Endoplasmic Reticulum to Golgi Transport Exclusive of Its Glycolytic Activity
Rab2 requires atypical protein kinase C iota/lambda (aPKC iota/lambda) to promote vesicle formation from vesicular tubular clusters (VTCs). The Rab2-generated vesicles are enriched in recycling proteins suggesting that the carriers are retrograde-directed and retrieve transport machinery back to the endoplasmic reticulum. These vesicles also contained the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We have previously established that GAPDH is required for membrane transport between the endoplasmic reticulum and the Golgi complex. Moreover, GAPDH is phosphorylated by aPKC iota/lambda and binds to the aPKC iota/lambda regulatory domain. In this study, we employed a combination of in vivo and in vitro assays and determined that GAPDH also interacts with Rab2. The site of GAPDH interaction was mapped to Rab2 residues 20-50. In addition to its glycolytic function, GAPDH has multiple intracellular roles. However, the function of GAPDH in the early secretory pathway is unknown. One possibility is that GAPDH ultimately provides energy in the form of ATP. To determine whether GAPDH catalytic activity was critical for transport in the early secretory pathway, a conservative substitution was made at Cys-149 located at the active site, and the mutant was biochemically characterized in a battery of assays. Although GAPDH (C149G) has no catalytic activity, Rab2 recruited the mutant protein to membranes in a quantitative binding assay. GAPDH (C149G) is phosphorylated by aPKC iota/lambda and binds directly to Rab2 when evaluated in an overlay binding assay. Importantly, VSV-G transport between the ER and Golgi complex is restored when an in vitro trafficking assay is performed with GAPDH-depleted cytosol and GAPDH (C149G). These data suggest that GAPDH imparts a unique function necessary for membrane trafficking from VTCs that does not require GAPDH glycolytic activity.
- Wayne State College United States
- Wayne State University United States
Binding Sites, Recombinant Fusion Proteins, Cell Membrane, Molecular Sequence Data, Glyceraldehyde-3-Phosphate Dehydrogenases, Golgi Apparatus, Biological Transport, Endoplasmic Reticulum, Transfection, Recombinant Proteins, Rats, Mutagenesis, Two-Hybrid System Techniques, Animals, Humans, Amino Acid Sequence, Glycolysis, Immunosorbent Techniques, Glutathione Transferase, HeLa Cells
Binding Sites, Recombinant Fusion Proteins, Cell Membrane, Molecular Sequence Data, Glyceraldehyde-3-Phosphate Dehydrogenases, Golgi Apparatus, Biological Transport, Endoplasmic Reticulum, Transfection, Recombinant Proteins, Rats, Mutagenesis, Two-Hybrid System Techniques, Animals, Humans, Amino Acid Sequence, Glycolysis, Immunosorbent Techniques, Glutathione Transferase, HeLa Cells
18 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2007IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2001IsAmongTopNSimilarDocuments
- 2004IsAmongTopNSimilarDocuments
- 1998IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).95 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
