Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Deoxygenated Disaccharide Analogs as Specific Inhibitors of β1–4-Galactosyltransferase 1 and Selectin-mediated Tumor Metastasis

Authors: Jeffrey D. Esko; Boopathy Ramakrishnan; Feng Yang; Anjana Sinha; Jillian R. Brown; Yitzhak Tor; Pradman K. Qasba;

Deoxygenated Disaccharide Analogs as Specific Inhibitors of β1–4-Galactosyltransferase 1 and Selectin-mediated Tumor Metastasis

Abstract

The disaccharide peracetylated GlcNAcbeta1-3Galbeta-O-naphthalenemethanol (disaccharide 1) diminishes the formation of the glycan sialyl Lewis X (Neu5Acalpha2-3Galbeta1-4(Fucalpha1-3) GlcNAc; sLe(X)) in tumor cells. Previous studies showed that the mechanism of action of disaccharide 1 involves three steps: (i) deacetylation by carboxyesterases, (ii) action as a biosynthetic intermediate for downstream enzymes involved in sLe(X) assembly, and (iii) generation of several glycans related to sLe(X). In this report, we show that GlcNAcbeta1-3Galbeta-O-naphthalenemethanol binds to the acceptor site of human beta1-4-galactosyltransferase much like the acceptor trisaccharide, GlcNAcbeta1-2Manbeta1-6Man, which is present on N-linked glycans. The 4'-deoxy analog, in which the acceptor hydroxyl group was replaced by -H, did not act as a substrate but instead acted as a competitive inhibitor of the enzyme. The acetylated form of this compound inhibited sLe(X) formation in U937 monocytic leukemia cells, suggesting that it had inhibitory activity in vivo as well. A series of synthetic acetylated analogs of 1 containing -H, -F, -N(3), -NH(2), or -OCH(3) instead of the hydroxyl groups at C-3'- and C-4'-positions of the terminal N-acetylglucosamine residue also blocked sLe(X) formation in cells. The reduction of sLe(X) by the 4'-deoxy analog also diminished experimental tumor metastasis by Lewis lung carcinoma in vivo. These data suggest that nonsubstrate disaccharides have therapeutic potential through their ability to bind to glycosyltransferases in vivo and to alter glycan-dependent pathologic processes.

Keywords

U937 Cells, Disaccharides, Galactosyltransferases, Carcinoma, Lewis Lung, Mice, Selectins, Animals, Humans, Drug Screening Assays, Antitumor, Enzyme Inhibitors, Neoplasm Metastasis, Neoplasm Transplantation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research