Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma

Authors: Vincent Peter Collins; David T.W. Jones; Lu Liu; Koichi Ichimura; Sylvia Kocialkowski; Danita M. Pearson;

Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma

Abstract

Pilocytic astrocytomas (PAs), WHO malignancy grade I, are the most frequently occurring central nervous system tumour in 5- to 19-year-olds. Recent reports have highlighted the importance of MAPK pathway activation in PAs, particularly through a tandem duplication leading to an oncogenic BRAF fusion gene. Here, we report two alternative mechanisms resulting in MAPK activation in PAs. Firstly, in striking similarity to the common BRAF fusion, tandem duplication at 3p25 was observed, which produces an in-frame oncogenic fusion between SRGAP3 and RAF1. This fusion includes the Raf1 kinase domain, and shows elevated kinase activity when compared with wild-type Raf1. Secondly, a novel 3 bp insertion at codon 598 in BRAF mimics the hotspot V600E mutation to produce a transforming, constitutively active BRaf kinase. Although these two alterations are not common, they bring the number of cases with an identified 'hit' on the Ras/Raf-signalling pathway to 36 from our series of 44 (82%), confirming its central importance to the development of pilocytic astrocytomas.

Related Organizations
Keywords

Gene Rearrangement, Proto-Oncogene Proteins B-raf, Comparative Genomic Hybridization, Oncogene Proteins, Fusion, MAP Kinase Signaling System, GTPase-Activating Proteins, Astrocytoma, Proto-Oncogene Proteins c-raf, Mice, Mutation, NIH 3T3 Cells, Animals, Humans, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    295
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
295
Top 1%
Top 1%
Top 1%
bronze