Pathways for membrane trafficking during cytokinesis
Authors: Laila I, Strickland; David R, Burgess;
pmid: 15055200
Pathways for membrane trafficking during cytokinesis
Abstract
The molecular mechanisms underlying targeted deposition of new membrane at the advancing furrow of a dividing cell have long been intriguing to cell biologists. Three recent studies have made use of Drosophila cellularization to explore current questions in this field. These findings indicate that both the secretory pathway and endosomal recycling contribute membrane to the advancing furrow. Furthermore, new work reveals that vesicles derived from the Rab11 recycling endosome (RE) promote actin remodeling at the furrow.
Related Organizations
- Boston College United States
Keywords
Cell Membrane, Animals, Biological Transport, Drosophila, Models, Biological, Cytokinesis
Cell Membrane, Animals, Biological Transport, Drosophila, Models, Biological, Cytokinesis
52 Research products, page 1 of 6
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).63 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
63
Top 10%
Top 10%
Top 10%
Fields of Science (3) View all
Fields of Science
