Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

IL-33 drives biphasic IL-13 production for noncanonical Type 2 immunity against hookworms

Authors: Dirk E. Smith; De'Broski R. Herbert; Li-Yin Hung; Lucas A. Dawson; Yanfen Yang; Ian P. Lewkowich; Jordan Downey;

IL-33 drives biphasic IL-13 production for noncanonical Type 2 immunity against hookworms

Abstract

Parasitic helminths are a major cause of chronic human disease, affecting more than 3 billion people worldwide. Host protection against most parasitic helminths relies upon Type 2 cytokine production, but the mechanisms that regulate interleukin (IL) 4 and 13 production from CD4 + T helper 2 cells (T H 2) and innate lymphoid type 2 cells (ILC2s) remain incompletely understood. The epithelial cell-derived cytokines IL-25 and IL-33 promote Type 2 responses, but the extent of functional redundancy between these cytokines is unclear and whether Type 2 memory relies upon either IL-25 or IL-33 is unknown. Herein, we demonstrate a pivotal role for IL-33 in driving primary and anamnestic immunity against the rodent hookworm Nippostrongylus brasiliensis . IL-33–deficient mice have a selective defect in ILC2–derived IL-13 during both primary and secondary challenge infections but generate stronger canonical CD4 + T helper 2 cells responses (IL-4, IgE, mast cells, and basophils) than WT controls. Lack of IL-13 production in IL-33–deficient mice impairs resistin-like molecule beta (RELMβ) expression and eosinophil recruitment, which are two mechanisms that eliminate N. brasiliensis parasites from infected hosts. Thus, IL-33 is requisite for IL-13 but not IL-4–driven Type 2 responses during hookworm infection.

Keywords

Analysis of Variance, Interleukin-13, Interleukins, Flow Cytometry, Interleukin-33, Real-Time Polymerase Chain Reaction, Eosinophils, Hookworm Infections, Mice, Th2 Cells, Hormones, Ectopic, Animals, Intercellular Signaling Peptides and Proteins, Nippostrongylus

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    186
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
186
Top 1%
Top 10%
Top 1%
bronze