Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Activation of CXCR4 Triggers Ubiquitination and Down-regulation of Major Histocompatibility Complex Class I (MHC-I) on Epithelioid Carcinoma HeLa Cells

Authors: Ziqing, Wang; Li, Zhang; Aimin, Qiao; Kurt, Watson; Jingwu, Zhang; Guo-Huang, Fan;

Activation of CXCR4 Triggers Ubiquitination and Down-regulation of Major Histocompatibility Complex Class I (MHC-I) on Epithelioid Carcinoma HeLa Cells

Abstract

Many cancer cells display down-regulated major histocompatibility complex (MHC) class I antigen (MHC-I), which seems to enable them to evade immune surveillance, whereas the underlying mechanisms remain incompletely understood. Here, we demonstrate that ligand (CXCL12) stimulation of CXCR4, a major chemokine receptor expressed in many malignant cancer cells, induced MHC-I heavy chain down-regulation from the cell surface of the human epithelioid carcinoma HeLa cells, the human U251 and U87 glioblastoma cells, the human MDA-MD 231 breast cancer cells, and the human SK-N-BE (2) neuroblastoma cells. Activation of CXCR4 also induced MHC-I down-regulation in human peripheral blood mononuclear cells. The internalized MHC-I heavy chain molecules were partially co-localized with Rab7, a later endosomal marker. Activation of CXCR4 induced ubiquitination of MHC-I heavy chain, and mutation of the C-terminal two lysine residues (Lys-332, Lys-337) on one of the MHC-I alleles, HLA.B7, blocked CXCR4-evoked ubiquitination and down-regulation of HLA.B7. Moreover, purified GST-conjugated CXCR4 C terminus directly associated with the purified His-tagged beta2-microglobulin (beta2M), and MHC-I heavy chain was co-immunoprecipitated with CXCR4 in a beta2M-dependent manner. This interaction appears to be critical for CXCR4-evoked down-regulation of MHC-I heavy chain as evidenced by the data that MHC-I heavy chain down-regulation was inhibited by either truncation of the CXCR4 C terminus or knockdown of beta2M. All together, these findings shed new light on the role of CXCR4 in tumor evasion of immune surveillance via inducing MHC-I down-regulation from the cell surface.

Keywords

Receptors, CXCR4, Ubiquitin, Histocompatibility Antigens Class I, Disease Progression, Down-Regulation, Humans, Immunoprecipitation, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
gold
Related to Research communities
Cancer Research