Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Wif-1 is expressed at cartilage-mesenchyme interfaces and impedes Wnt3a-mediated inhibition of chondrogenesis

Authors: Cordula, Surmann-Schmitt; Nathalie, Widmann; Uwe, Dietz; Bernhard, Saeger; Nicole, Eitzinger; Yukio, Nakamura; Marianne, Rattel; +6 Authors

Wif-1 is expressed at cartilage-mesenchyme interfaces and impedes Wnt3a-mediated inhibition of chondrogenesis

Abstract

Wnt factors are involved in the regulation of all steps of cartilage development. The activity of Wnt factors is generally regulated at the extracellular level by factors like the Dkk family, sFRPs, Cerberus and Wnt inhibitory factor 1 (Wif-1). Here we report that Wif-1 is highly expressed at cartilage-mesenchyme interfaces of the early developing skeleton. In fetal and postnatal skeletal development, Wif-1 is expressed in a sharply restricted zone in the upper hyaline layer of epiphyseal and articular cartilage and in trabecular bone. Coimmunoprecipitation and pull-down assays using recombinant Wif-1 and Wnt factors show specific binding of Wif-1 to Wnt3a, Wnt4, Wnt5a, Wnt7a, Wnt9a and Wnt11. Moreover, Wif-1 was able to block Wnt3a-mediated activation of the canonical Wnt signalling pathway. Consequently, Wif-1 impaired growth of mesenchymal precursor cells and neutralised Wnt3a-mediated inhibition of chondrogenesis in micromass cultures of embryonic chick limb-bud cells. These results identify Wif-1 as a novel extracellular Wnt modulator in cartilage biology.

Keywords

Extracellular Matrix Proteins, Limb Buds, Embryonic Development, Gene Expression Regulation, Developmental, Extremities, Mesenchymal Stem Cells, Chick Embryo, Mesoderm, Tissue Culture Techniques, Mice, Cartilage, Animals, Newborn, Animals, Intercellular Signaling Peptides and Proteins, Chondrogenesis, Epiphyses, Adaptor Proteins, Signal Transducing, Cell Proliferation, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    95
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
95
Top 10%
Top 10%
Top 10%
bronze