Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature Genetics
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2012
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Genetics
Article . 2012
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity

Authors: Andersen, Erik C; Gerke, Justin P; Shapiro, Joshua A; Crissman, Jonathan R; Ghosh, Rajarshi; Bloom, Joshua S; Félix, Marie-Anne; +1 Authors

Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity

Abstract

The nematode Caenorhabditis elegans is central to research in molecular, cell and developmental biology, but nearly all of this research has been conducted on a single strain of C. elegans. Little is known about the population genomic and evolutionary history of this species. We characterized C. elegans genetic variation using high-throughput selective sequencing of a worldwide collection of 200 wild strains and identified 41,188 SNPs. Notably, C. elegans genome variation is dominated by a set of commonly shared haplotypes on four of its six chromosomes, each spanning many megabases. Population genetic modeling showed that this pattern was generated by chromosome-scale selective sweeps that have reduced variation worldwide; at least one of these sweeps probably occurred in the last few hundred years. These sweeps, which we hypothesize to be a result of human activity, have drastically reshaped the global C. elegans population in the recent past.

Keywords

Evolution, Population, Medical and Health Sciences, Polymorphism, Single Nucleotide, Article, Chromosomes, Linkage Disequilibrium, Evolution, Molecular, Genetic, Models, Genetics, Animals, Cluster Analysis, Polymorphism, Selection, Genetic, Caenorhabditis elegans, Selection, Phylogeny, Demography, Genome, Models, Genetic, Human Genome, Molecular, Genetic Variation, High-Throughput Nucleotide Sequencing, Single Nucleotide, Biological Sciences, Genetics, Population, Haplotypes, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    362
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
362
Top 1%
Top 1%
Top 0.1%
Green
hybrid