Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DNA and Cell Biologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DNA and Cell Biology
Article . 1999 . Peer-reviewed
License: Mary Ann Liebert TDM
Data sources: Crossref
versions View all 2 versions

Identification of Mouse CPX-1, a Novel Member of the Metallocarboxypeptidase Gene Family with Highest Similarity to CPX-2

Authors: Y, Lei; X, Xin; D, Morgan; J E, Pintar; L D, Fricker;

Identification of Mouse CPX-1, a Novel Member of the Metallocarboxypeptidase Gene Family with Highest Similarity to CPX-2

Abstract

The recent finding that Cpe(fat)/Cpe(fat) mice, which lack carboxypeptidase E (CPE) activity because of a point mutation, are still capable of a reduced amount of neuroendocrine peptide processing suggested that additional carboxypeptidases (CPs) participate in this processing reaction. Searches for novel members of the CPE gene family led to the discovery of CPD, CPZ, AEBP1, and CPX-2. In the present report, we describe mouse CPX-1, another novel member of this gene family. Like AEBP1 and CPX-2, CPX-1 contains an N-terminal region of 160 amino acids with sequence similarity to the discoidin domain of a variety of proteins. The 410-residue CP-like domain of CPX-1 has 54% to 62% amino acid sequence identity with AEBP1 and CPX-2 and 33% to 49% amino acid identity with other members of the CPE subfamily. However, several active-site residues that are important for catalytic activity of other CPs are not conserved in CPX-1. Furthermore, CPX-1 expressed in either the baculovirus system or the mouse AtT-20 cell line does not cleave standard CP substrates. Northern blot analysis showed the highest levels of CPX-1 mRNA in testis and spleen and lower levels in salivary gland, brain, heart, lung, and kidney. In situ hybridization of CPX-1 mRNA in embryonic and fetal mouse tissue showed expression throughout the head and thorax, with abundance in primordial cartilage and skeletal structures. In the head, high levels of CPX-1 mRNA were associated with the nasal mesenchyme, primordial cartilage structures in the ear, and the meninges. In the thorax, CPX-1 mRNA was expressed in multiple developing skeletal structures, including chondrocytes and perichondrial cells of the rib, vertebral, and long-bone primordia. Taken together, these findings suggest that it is unlikely that CPX-1 functions in the processing of neuroendocrine peptides. Instead, CPX-1 may have a role in development, possibly mediating cell interactions via its discoidin domain.

Keywords

DNA, Complementary, Base Sequence, Carboxypeptidases A, Molecular Sequence Data, Gene Expression, Metalloendopeptidases, Carboxypeptidases, Blotting, Northern, Cell Line, Mice, Inbred C57BL, Mice, Genes, Pregnancy, Animals, Humans, Female, Amino Acid Sequence, RNA, Messenger, Carrier Proteins, Metalloexopeptidases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%