Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Acta Haematologicaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Acta Haematologica
Article . 1997 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Hematopoietic Modulation by the Tachykinins

Authors: Pranela Rameshwar; Pedro Gascón;
Abstract

We have been studying hematopoietic effects by the tachykinins, which like many other neuropeptides can be expressed in neural and nonneural tissues. Substance P (SP) and neurokinin-A (NK-A), members of the tachykinins are immune and hematopoietic modulators. SP and NK-A are derived from the preprotachykinin-I gene (PPT-I) through alternate splicing and posttranslational modification. In the bone marrow (BM), nerve fibers provide a source of neural SP and the stroma provides a source of nonneural SP. The tachykinins interact with each of three cloned neurokinin (NK) receptors (NK-1R, NK-2R, NK-3R) with SP and NK-A exhibiting binding preferences for NK-1R and NK-2R, respectively. Proliferation of myeloid progenitors (CFU-GM) is differentially regulated by SP and NK-A. The former enhances the proliferation whereas the latter is inhibitory. The BM stroma mediates most of the hematopoietic effects exerted by SP and NK-A partly through the induction of cytokines. The proliferative effects of SP correlate with the induction of positive hematopoietic growth factors such as IL-3, IL-6, GM-CSF and c-kit ligand and the inhibitory effects by NK-A correlate with the induction of two negative hematopoietic regulators, MIP-1 alpha and TGF-beta. Intracellular signals mediated by NK-1R and NK-2R are part of the mechanism responsible for tachykinin-mediated regulation of hematopoiesis. The stimulatory effects on BM progenitors mediated by NK-1R can be partly inhibited by NK-2R activation. IL-1 and other cytokines induced by SP in BM stroma modulate NK-1R induction. Furthermore, SP can induce IL-1 type I receptor in stroma. Together, these data suggest that the tachykinins and the cytokines interact to regulate hematopoiesis. These interactions contribute to hematopoietic regulation by mechanisms that involve induction of: (1) tachykinins and cytokines by each other; (2) NK-1R by cytokines and (3) cytokine receptor by the tachykinins. These studies emphasize that in terms of hematopoiesis, the cytokines and neuropeptides are not mutually exclusive factors and thus, the hematopoietic regulatory network would be incomplete without the role of neuropeptides being considered.

Keywords

Neurokinin A, Tachykinins, Animals, Humans, Substance P, Hematopoiesis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Average
Top 10%
Top 10%