Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Plant Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Plant Journal
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

The occurrence of ‘bulbs’, a complex configuration of the vacuolar membrane, is affected by mutations of vacuolar SNARE and phospholipase in Arabidopsis

Authors: Chieko, Saito; Tomohiro, Uemura; Chie, Awai; Motoki, Tominaga; Kazuo, Ebine; Jun, Ito; Takashi, Ueda; +4 Authors

The occurrence of ‘bulbs’, a complex configuration of the vacuolar membrane, is affected by mutations of vacuolar SNARE and phospholipase in Arabidopsis

Abstract

SummaryThe plant vacuole fulfills a variety of functions, and is essential for plant growth and development. We previously identified complex and mobile structures on the continuous vacuolar membrane, which we refer to as ‘bulbs’. To ascertain their biological significance and function, we searched for markers associated with bulbs, and mutants that show abnormalities with respect to bulbs. We observed bulb‐like structures after expression of non‐membranous proteins as well as the functional soluble N‐ethylmaleimide‐sensitive factor attachment protein receptor (SNARE) molecules VAM3 and VTI11. Bulbs are formed in more tissues than previously reported, including flowering organs, suspension culture cells, endodermal cells in the flowering stem, and at very early stages of seed germination. Using existing and newly developed marker lines, we found that the frequency of bulb occurrence is significantly decreased in multiple shoot gravitropism (sgr) mutants, which are known to have a defect in vacuolar membrane properties in endodermal cells. Based on results with new marker lines, which enabled us to observe the process of bulb biogenesis, and analysis of the phenotypes of these mutants, we propose multiple mechanisms for bulb formation, one of which may be that used for formation of transvacuolar strands.

Keywords

Arabidopsis Proteins, Qa-SNARE Proteins, Cell Membrane, Green Fluorescent Proteins, Arabidopsis, Biological Transport, Germination, Qb-SNARE Proteins, Plant Roots, Plant Epidermis, Plant Leaves, Gravitropism, Phenotype, Phospholipases, Mutation, Seeds, Vacuoles, Flowering Tops, Biomarkers, Plant Shoots

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
bronze