An Insight into the Interaction Between α-Ketoamide-Based Inhibitor and Coronavirus Main Protease: A Detailed in Silico Study
An Insight into the Interaction Between α-Ketoamide-Based Inhibitor and Coronavirus Main Protease: A Detailed in Silico Study
The search for therapeutic drugs that can neutralize the effects of COVID-2019 (SARS-CoV-2) infection is the main focus of current research. The coronavirus main protease (Mpro) is an attractive target for anti-coronavirus drug design. Further, α-ketoamide is proved to be very effective as a reversible covalent-inhibitor against cysteine proteases. Herein, we report on the non-covalent to the covalent adduct formation mechanism of α‑ketoamide-based inhibitor with the enzyme active site amino acids by QM/SQM model (QM= quantum mechanical, SQM= semi-empirical QM). To uncover the mechanism, we focused on two approaches: a concerted and a stepwise fashion. The concerted pathway proceeds via deprotonation of the thiol of cysteine (here, Cys145 SgH) and simultaneous reversible nucleophilic attack of sulfur onto the α-ketoamide warhead. In this work, we propose three plausible concerted pathways. On the contrary, in a traditional two-stage pathway, the first step is proton transfer from Cys145 SgH to His41 Nd forming an ion pair, and consecutively, in the second step, the thiolate ion attacks the a-keto group to form a thiohemiketal. In this reaction, we find that the stability of the tetrahedral intermediate oxyanion/hydroxyl hole plays an important role. Moreover, as the α-keto group has two faces Si or Re for the nucleophilic attack, we considered both possibilities of attack leading to S- and R-thiohemiketal. We computed the structural, electronic, and energetic parameters of all stationary points including transition states via ONIOM methodology at B3LYP/6-31G(d):PM6 level. Furthermore, to get more accurate results, we also calculated the single-point dispersion-corrected energy profile by using ωB97X-D/6-31G(d,p):PM6 level. Additionally, to characterize covalent, weak noncovalent interaction (NCI) and hydrogen-bonds, we applied NCI-reduced density gradient (NCI-RDG) methods along with Bader’s Quantum Theory of Atoms-in-Molecules (QTAIM) and natural bonding orbital (NBO) analysis.
Binding Sites, Coronavirus M Proteins, Organic Chemistry, Biophysics, Hydrogen Bonding, Biochemistry, Amides, Article, Coronavirus, Molecular Docking Simulation, Viral Proteins, Catalytic Domain, Drug Design, Humans, Quantum Theory, Thermodynamics, Protease Inhibitors, Coronavirus Infections, Peptide Hydrolases
Binding Sites, Coronavirus M Proteins, Organic Chemistry, Biophysics, Hydrogen Bonding, Biochemistry, Amides, Article, Coronavirus, Molecular Docking Simulation, Viral Proteins, Catalytic Domain, Drug Design, Humans, Quantum Theory, Thermodynamics, Protease Inhibitors, Coronavirus Infections, Peptide Hydrolases
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
