The Drosophila Importin-α3 Is Required for Nuclear Import of Notch In Vivo and It Displays Synergistic Effects with Notch Receptor on Cell Proliferation
The Drosophila Importin-α3 Is Required for Nuclear Import of Notch In Vivo and It Displays Synergistic Effects with Notch Receptor on Cell Proliferation
The Notch signaling pathway controls diverse cell-fate specification events throughout development. The versatility of this pathway to influence different aspects of development comes from its multiple levels of regulation. Upon ligand-induced Notch activation, the Notch intracellular domain (Notch-ICD) is released from the membrane and translocates to the nucleus, where it transduces Notch signals by regulating the transcription of downstream target genes. But the exact mechanism of translocation of Notch-ICD into the nucleus is not clear. Here, we implicate Importin-α3 (also known as karyopherin-α3) in the nuclear translocation of Notch-ICD in Drosophila. Our present analyses reveal that Importin-α3 can directly bind to Notch-ICD and loss of Importin-α3 function results in cytoplasmic accumulation of the Notch receptor. Using MARCM (Mosaic Analysis with a Repressible Cell Marker) technique, we demonstrate that Importin-α3 is required for nuclear localization of Notch-ICD. These results reveal that the nuclear transport of Notch-ICD is mediated by the canonical Importin-α3/Importin-β transport pathway. In addition, co-expression of both Notch-ICD and Importin-α3 displays synergistic effects on cell proliferation. Taken together, our results suggest that Importin-α3 mediated nuclear import of Notch-ICD may play important role in regulation of Notch signaling.
- Banaras Hindu University India
Cell Nucleus, alpha Karyopherins, Receptors, Notch, Science, Q, R, Active Transport, Cell Nucleus, Drosophila melanogaster, Mutation, Medicine, Animals, Drosophila Proteins, Research Article, Cell Proliferation, Signal Transduction
Cell Nucleus, alpha Karyopherins, Receptors, Notch, Science, Q, R, Active Transport, Cell Nucleus, Drosophila melanogaster, Mutation, Medicine, Animals, Drosophila Proteins, Research Article, Cell Proliferation, Signal Transduction
16 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).38 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
