Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Peptidesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Peptides
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Peptides
Article . 2005
versions View all 2 versions

A nonpeptide provides insight into mechanisms that regulate Drosophila melanogaster heart contractions

Authors: Melissa, Mispelon; Kiran, Thakur; Leslie, Chinn; Ryan, Owen; Ruthann, Nichols;

A nonpeptide provides insight into mechanisms that regulate Drosophila melanogaster heart contractions

Abstract

Here we report the effect of a nonpeptide, benzethonium chloride (bztc), on Drosophila melanogaster larval, pupal, and adult heart rates in vivo. Benzethonium chloride reduced the frequency of spontaneous contractions in the D. melanogaster pupal heart, but not in the larval heart or the adult heart as measured in noninvasive whole animal preparations. When applied directly to the D. melanogaster heart, in the absence of hemolymph, bztc reduced the frequency of spontaneous contractions in larval, pupal, and adult hearts. These findings are consistent with the conclusion that bztc acts through or is regulated by different mechanisms in these three developmental stages. An alternative explanation is that larval hemolymph and adult hemolymph contain a material that interferes with the effect of the nonpeptide on heart contractions. Bztc mimicked the effect of the peptide dromyosuppressin (DMS) on the heart at an equivalent concentration; in contrast, 103-fold more nonpeptide is required to mimic the effect of DMS on fly gut. These findings are consistent with the presence of tissue-specific myosuppressin receptors or mechanisms.

Related Organizations
Keywords

Male, Aging, Dose-Response Relationship, Drug, Pupa, Heart, Myocardial Contraction, Injections, Drosophila melanogaster, Larva, Benzethonium, Animals, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average