Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1979 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Sequences of five potential recombination sites encoded close to an immunoglobulin kappa constant region gene.

Authors: E E, Max; J G, Seidman; P, Leder;

Sequences of five potential recombination sites encoded close to an immunoglobulin kappa constant region gene.

Abstract

Immunoglobulin kappa chain gene formation involves site-specific somatic recombination between one of several hundred germ-line variable region genes and a joining site (or "J segment") encoded close to the constant region gene. We have cloned and determined the nucleotide sequence of major portions of the recombination region of the mouse kappa gene and discovered a series of five such J segments spread out along a segment of DNA 2.4 kilobases from the kappa constant region gene. These J segments encode the 13 COOH-terminal amino acids of the variable region, probably including amino acids involved in the antigen combining site and in heavy/light chain contacts. The J segments also display striking sequence homology to one another in both their coding and immediately flanking sequences. Major elements of a short palindrome--CAC(TA)GTG--are preserved adjacent to the recombination sites of both variable and J region genes and constitute inverted repeats at both ends of the sequences to be joined. These palindromes can be written as a hypothetical stem structure that draws variable and J regions together, providing a possible molecular basis for the DNA joining event. Four of the J segments that we have discovered encode amino acid sequences already found in myeloma proteins. By altering the frame of recombination, we can account for additional light chain amino acid sequences, suggesting that the V/J joining event might generate antibody diversity somatically both by using different combinations of variable and J region genes and by using alternative joining frames.

Keywords

Recombination, Genetic, Base Sequence, Genes, MHC Class II, Genetic Variation, Immunoglobulins, DNA, Neoplasms, Experimental, Immunoglobulin kappa-Chains, Mice, Immunoglobulin J-Chains, Animals, Nucleic Acid Conformation, Immunoglobulin Light Chains, Immunoglobulin Constant Regions, Multiple Myeloma

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    578
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
578
Top 10%
Top 0.1%
Top 0.1%
bronze