Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied and Environm...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied and Environmental Microbiology
Article . 1998 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 3 versions

The H + -ATPase in the Plasma Membrane of Saccharomyces cerevisiae Is Activated during Growth Latency in Octanoic Acid-Supplemented Medium Accompanying the Decrease in Intracellular pH and Cell Viability

Authors: C A, Viegas; P F, Almeida; M, Cavaco; I, Sá-Correia;

The H + -ATPase in the Plasma Membrane of Saccharomyces cerevisiae Is Activated during Growth Latency in Octanoic Acid-Supplemented Medium Accompanying the Decrease in Intracellular pH and Cell Viability

Abstract

ABSTRACT Saccharomyces cerevisiae plasma membrane H + -ATPase activity was stimulated during octanoic acid-induced latency, reaching maximal values at the early stages of exponential growth. The time-dependent pattern of ATPase activation correlated with the decrease of cytosolic pH (pH i ). The cell population used as inoculum exhibited a significant heterogeneity of pH i , and the fall of pH i correlated with the loss of cell viability as determined by plate counts. When exponential growth started, only a fraction of the initial population was still viable, consistent with the role of the physiology and number of viable cells in the inoculum in the duration of latency under acid stress.

Related Organizations
Keywords

Enzyme Activation, Proton-Translocating ATPases, Cell Membrane, Saccharomyces cerevisiae, Caprylates, Hydrogen-Ion Concentration, Culture Media

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 10%
Top 10%
Top 10%
gold