Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular and Cellul...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Neuroscience
Article . 1997 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Expression ofTiam-1in the Developing Brain Suggests a Role for the Tiam-1–Rac Signaling Pathway in Cell Migration and Neurite Outgrowth

Authors: Elisabeth Ehler; Patricia C. Salinas; Frank N. van Leeuwen; John G. Collard;

Expression ofTiam-1in the Developing Brain Suggests a Role for the Tiam-1–Rac Signaling Pathway in Cell Migration and Neurite Outgrowth

Abstract

During development proper neuronal migration and neurite extension are essential for the formation of functional neuronal networks. These processes require the reorganization of the cytoskeleton by modifying the dynamics of actin filaments and microtubules. The Rho subfamily of GTPases regulates actin cytoskeletal changes during development. Tiam-1, a GDP-GTP exchange factor for the small GTPase Rac and implicated in tumor invasion and metastasis, is expressed in the developing CNS. To study the function of Tiam-1 in neuronal migration and neurite extension, we examined the pattern of Tiam-1 expression in weaver mice, in which cerebellar granule cells fail to migrate to their final position and subsequently die. Tiam-1 is expressed in wild-type granule cells as they migrate to the internal granular layer and send axone. In contrast, weaver homozygous animals do not express. Tiam-1 in premigratory granule cells. Heterozygous animals, in which granule cells exhibit a slow rate of migration, express low levels of Tiam-1. In the cerebral cortex, Tiam-1 is also expressed in migrating neurons. Our findings suggest that Tiam-1 contributes to cytoskeletal reorganization required during cell migration and neurite extension in defined neuronal populations, presumably by activation of Rac.

Related Organizations
Keywords

Brain, Proteins, Mice, Mutant Strains, Mice, Cell Movement, Pregnancy, Neurites, Animals, Guanine Nucleotide Exchange Factors, Female, T-Lymphoma Invasion and Metastasis-inducing Protein 1, Cell Division, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    92
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
92
Top 10%
Top 10%
Top 10%