Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Functional & Integra...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Functional & Integrative Genomics
Article . 2003 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

The auxin-induced transcriptome for etiolated Arabidopsis seedlings using a structure/function approach

Authors: John, Pufky; Yang, Qiu; Mulpuri V, Rao; Patrick, Hurban; Alan M, Jones;

The auxin-induced transcriptome for etiolated Arabidopsis seedlings using a structure/function approach

Abstract

To increase our understanding of the mode of action of auxin, we analyzed auxin-induced changes in the Arabidopsis transcriptome with microarrays representing 20426 Arabidopsis genes. Treatment of etiolated seedlings with low concentrations of the auxin, indole-3-acetic acid (IAA), decreased the expression levels of 23 genes, whereas it increased the expression levels of 47 genes within 20 min. After 40 min, the directional trend in genomic change was predominantly an increase in gene expression. Among the most rapidly induced changes are those in genes encoding transcription factors. Promoter regions of transiently induced genes contained DNA motifs that bind auxin response (ARFAT) and silence element binding factors whereas genes induced by IAA during the entire experimental period contained MYC and ARFAT DNA motifs at higher frequencies. Six structurally diverse auxins were analyzed to determine genes that are unique to a specific auxin, as well as a common set of genes that are rapidly regulated by all tested auxins, thus enabling the identification of shared DNA motifs. In addition to ARFAT, analysis of promoter regions of genes induced by all six auxins revealed the presence of an abscisic-acid-responsive DC3 promoter-binding factor and low temperature responsive elements suggesting a possible role for abscisic acid in modulating auxin-induced responses.

Keywords

Time Factors, Indoleacetic Acids, Molecular Structure, Transcription, Genetic, Gene Expression Profiling, Arabidopsis, Regulatory Sequences, Nucleic Acid, Genes, Plant, Structure-Activity Relationship, Plant Growth Regulators, Gene Expression Regulation, Plant, Seedlings, Cluster Analysis, 5' Untranslated Regions, Promoter Regions, Genetic, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%