Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 2007
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 2007 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

Squeeze involvement in the specification of Drosophila leucokinergic neurons: Different regulatory mechanisms endow the same neuropeptide selection

Authors: Herrero, Pilar; Magariños, Marta; Molina, Isabel; Benito, Jonathan; Dorado, Belén; Turiégano, Enrique; Canal, Inmaculada; +1 Authors

Squeeze involvement in the specification of Drosophila leucokinergic neurons: Different regulatory mechanisms endow the same neuropeptide selection

Abstract

One of the most widely studied phenomena in the establishment of neuronal identity is the determination of neurosecretory phenotype, in which cell-type-specific combinatorial codes direct distinct neurotransmitter or neuropeptide selection. However, neuronal types from divergent lineages may adopt the same neurosecretory phenotype, and it is unclear whether different classes of neurons use different or similar components to regulate shared features of neuronal identity. We have addressed this question by analyzing how differentiation of the Drosophila larval leucokinergic system, which is comprised of only four types of neurons, is regulated by factors known to affect expression of the FMRFamide neuropeptide. We show that all leucokinergic cells express the transcription factor Squeeze (Sqz). However, based on the effect on LK expression of loss- and gain-of-function mutations, we can describe three types of Lk regulation. In the brain LHLK cells, both Sqz and Apterous (Ap) are required for LK expression, but surprisingly, high levels of either Sqz or Ap alone are sufficient to restore LK expression in these neurons. In the suboesophageal SELK cells, Sqz, but not Ap, is required for LK expression. In the abdominal ABLK neurons, inhibition of retrograde axonal transport reduces LK expression, and although sqz is dispensable for LK expression in these cells, it can induce ectopic leucokinergic ABLK-like cells when over-expressed. Thus, Sqz appears to be a regulatory factor for neuropeptidergic identity common to all leucokinergic cells, whose function in different cell types is regulated by cell-specific factors.

Related Organizations
Keywords

Homeodomain Proteins, Neurons, Embryology, Neurosecretion, LIM-Homeodomain Proteins, Neuropeptides, Axons, Drosophila melanogaster, Animals, Drosophila Proteins, Developmental Biology, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Average
hybrid