Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2011
versions View all 5 versions

FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation

Authors: Manolis Pasparakis; Vangelis Kondylis; Vanesa Fernández-Majada; Maria A. Ermolaeva; Anja Sterner-Kock; Katerina Vlantis; Geert van Loo; +3 Authors

FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation

Abstract

Intestinal immune homeostasis depends on a tightly regulated cross talk between commensal bacteria, mucosal immune cells and intestinal epithelial cells (IECs). Epithelial barrier disruption is considered to be a potential cause of inflammatory bowel disease; however, the mechanisms regulating intestinal epithelial integrity are poorly understood. Here we show that mice with IEC-specific knockout of FADD (FADD(IEC-KO)), an adaptor protein required for death-receptor-induced apoptosis, spontaneously developed epithelial cell necrosis, loss of Paneth cells, enteritis and severe erosive colitis. Genetic deficiency in RIP3, a critical regulator of programmed necrosis, prevented the development of spontaneous pathology in both the small intestine and colon of FADD(IEC-KO) mice, demonstrating that intestinal inflammation is triggered by RIP3-dependent death of FADD-deficient IECs. Epithelial-specific inhibition of CYLD, a deubiquitinase that regulates cellular necrosis, prevented colitis development in FADD(IEC-KO) but not in NEMO(IEC-KO) mice, showing that different mechanisms mediated death of colonic epithelial cells in these two models. In FADD(IEC-KO) mice, TNF deficiency ameliorated colon inflammation, whereas MYD88 deficiency and also elimination of the microbiota prevented colon inflammation, indicating that bacteria-mediated Toll-like-receptor signalling drives colitis by inducing the expression of TNF and other cytokines. However, neither CYLD, TNF or MYD88 deficiency nor elimination of the microbiota could prevent Paneth cell loss and enteritis in FADD(IEC-KO) mice, showing that different mechanisms drive RIP3-dependent necrosis of FADD-deficient IECs in the small and large bowel. Therefore, by inhibiting RIP3-mediated IEC necrosis, FADD preserves epithelial barrier integrity and antibacterial defence, maintains homeostasis and prevents chronic intestinal inflammation. Collectively, these results show that mechanisms preventing RIP3-mediated epithelial cell death are critical for the maintenance of intestinal homeostasis and indicate that programmed necrosis of IECs might be implicated in the pathogenesis of inflammatory bowel disease, in which Paneth cell and barrier defects are thought to contribute to intestinal inflammation.

Keywords

Paneth Cells, Colon, Fas-Associated Death Domain Protein, Intracellular Signaling Peptides and Proteins, Apoptosis, Epithelial Cells, Colitis, Inflammatory Bowel Diseases, Enteritis, Deubiquitinating Enzyme CYLD, Cysteine Endopeptidases, Mice, Necrosis, Receptor-Interacting Protein Serine-Threonine Kinases, Chronic Disease, Myeloid Differentiation Factor 88, Tumor Necrosis Factors, Animals, Metagenome, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    563
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
563
Top 0.1%
Top 1%
Top 0.1%