Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Anesthesiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Anesthesiology
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Anesthesiology
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 7 versions

Molecular Changes Induced in Rat Liver by Hemorrhage and Effects of Melanocortin Treatment

Authors: Lonati C; Sordi A; GIULIANI, Daniela; SPACCAPELO, Luca; Leonardi P; Carlin A; OTTANI, Alessandra; +4 Authors

Molecular Changes Induced in Rat Liver by Hemorrhage and Effects of Melanocortin Treatment

Abstract

Background Melanocortin peptides improve hemodynamic parameters and prevent death during severe hemorrhagic shock. In the present research we determined influences of a synthetic melanocortin 1/4 receptor agonist on the molecular changes that occur in rat liver during hemorrhage. Methods Controlled-volume hemorrhage was performed in adult rats under general anesthesia by a stepwise blood withdrawal until mean arterial pressure fell to 40 mmHg. Then rats received either saline or the synthetic melanocortin 1/4 receptor agonist Butir-His-D-Phe-Arg-Trp-Sar-NH2 (Ro27-3225; n = 6-8 per group). Hemogasanalysis was performed throughout a 60-min period. Gene expression in liver samples was determined at 1 or 3 h using quantitative real-time polymerase chain reaction. Results At 1 h, in saline-treated shocked rats, there were significant increases in activating transcription factor 3 (Atf3), early growth response 1 (Egr1), heme oxygenase (decycling) 1 (Hmox1), FBJ murine osteosarcoma viral oncogene homolog (Fos), and jun oncogene (Jun). These changes were prevented by Ro27-3225 (mean ± SEM: Atf3 152.83 ± 58.62 vs. 579.00 ± 124.13, P = 0.002; Egr1 13.21 ± 1.28 vs. 26.63 ± 1.02, P = 0.001; Hmox1 3.28 ± 0.31 vs. 166.54 ± 35.03, P = 0.002; Fos 4.36 ± 1.03 vs. 14.90 ± 3.44, P < 0.001; Jun 6.62 ± 1.93 vs. 15.07 ± 2.09, P = 0.005; respectively). Increases in alpha-2-macroglobulin (A2m), heat shock 70kD protein 1A (Hspa1a), erythropoietin (Epo), and interleukin-6 (Il6) occurred at 3 h in shocked rats and were prevented by Ro27-3225 treatment (A2m 6.90 ± 0.82 vs. 36.73 ± 4.00, P < 0.001; Hspa1a 10.34 ± 3.28 vs. 25.72 ± 3.64, P = 0.001; Epo 0.49 ± 0.13 vs. 2.37 ± 0.73, P = 0.002; Il6 1.05 ± 0.15 vs. 1.88 ± 0.23, P < 0.001; respectively). Further, at 3 h in shocked rats treated with Ro27-3225 there were significant increases in tight junction protein 1 (Tjp1; 27.30 ± 2.43 vs. 5.03 ± 1.68, P < 0.001) and nuclear receptor subfamily 4, group A, member 1 (Nr4a1; 91.03 ± 16.20 vs. 30.43 ± 11.0, P = 0.01) relative to sham animals. Treatment with Ro27-3225 rapidly restored blood pressure, hemogasanalysis parameters, and lactate blood levels. Conclusions Melanocortin treatment significantly prevents most of the systemic and hepatic detrimental changes induced by hemorrhage.

Keywords

melanocortins; hemorrhagic shock; gene expression profile, melanocortin; Hemorrhage, Hemorrhage, Shock, Hemorrhagic, Animals ; Melanocortins ; Peptides ; Rats; Rats, Wistar ; Receptor, Melanocortin, Type 1 ; Receptor, Melanocortin, Type 4 ; Shock, Hemorrhagic ; Treatment Outcome, Melanocortins, Rats, Anesthesiology and Pain Medicine, Treatment Outcome, Animals, Receptor, Melanocortin, Type 4, melanocortin, Rats, Wistar, Peptides, Receptor, Melanocortin, Type 1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 109
  • 109
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
11
Average
Average
Top 10%
109
Green
bronze