Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Journal of Cell Science
Article . 2014 . Peer-reviewed
Data sources: Crossref
Development
Article . 2014 . Peer-reviewed
Data sources: Crossref
Development
Article . 2014
versions View all 4 versions

Translocating myonuclei have distinct leading and lagging edges that require Kinesin and Dynein

Authors: Eric S, Folker; Victoria K, Schulman; Mary K, Baylies;

Translocating myonuclei have distinct leading and lagging edges that require Kinesin and Dynein

Abstract

Nuclei are precisely positioned within all cells, and mispositioned nuclei are a hallmark of many muscle diseases. Myonuclear positioning is dependent on Kinesin and Dynein, but interactions between these motor proteins and their mechanisms of action are unclear. We find that in developing Drosophila muscles, Dynein and Kinesin work together to move nuclei in a single direction by two separate mechanisms that are spatially segregated. First, the two motors work together in a sequential pathway that acts from the cell cortex at the muscle poles. This mechanism requires Kinesin-dependent localization of Dynein to cell cortex near the muscle pole. From this location Dynein can pull microtubule minus-ends and the attached myonuclei toward the muscle pole. Second, the motors exert forces directly on individual nuclei independently of the cortical pathway. However, the activities of the two motors on the nucleus are polarized relative to the direction of myonuclear translocation: Kinesin acts at the leading edge of the nucleus, whereas Dynein acts at the lagging edge of the nucleus. Consistent with the activities of Kinesin and Dynein being polarized on the nucleus, nuclei rarely change direction, and those that do, reorient to maintain the same leading edge. Conversely, nuclei in both Kinesin and Dynein mutant embryos change direction more often and do not maintain the same leading edge when changing directions. These data implicate Kinesin and Dynein in two distinct and independently regulated mechanisms of moving myonuclei, which together maximize the ability of myonuclei to achieve their proper localizations within the constraints imposed by embryonic development.

Related Organizations
Keywords

Cell Nucleus, Cell Nucleus Shape, Models, Statistical, Molecular Motor Proteins, Movement, Muscles, Dyneins, Kinesins, Muscle Development, Animals, Genetically Modified, Drosophila melanogaster, Mutation, Animals, Drosophila Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%
bronze