Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nucleic Acids Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleic Acids Research
Article . 1999 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

An essential surface motif (WAQKW) of yeast RNA triphosphatase mediates formation of the mRNA capping enzyme complex with RNA guanylyltransferase

Authors: C K, Ho; K, Lehman; S, Shuman;

An essential surface motif (WAQKW) of yeast RNA triphosphatase mediates formation of the mRNA capping enzyme complex with RNA guanylyltransferase

Abstract

Saccharomyces cerevisiae RNA triphosphatase (Cet1p) and RNA guanylyltransferase (Ceg1p) interact in vivo and in vitro to form a bifunctional mRNA capping enzyme complex. Cet1p binding to Ceg1p stimulates the guanylyltransferase activity of Ceg1p. Here we localize the guanylyltransferase-binding and guanylyltransferase-stimulation functions of Cet1p to a 21-amino acid segment from residues 239 to 259. The guanylyltransferase-binding domain is located on the protein surface, as gauged by protease sensitivity, and is conserved in the Candida albicans RNA triphosphatase CaCet1p. Alanine-cluster mutations of a WAQKW motif within this segment abolish guanylyltransferase-binding in vitro and Cet1p function in vivo, but do not affect the triphosphatase activity of Cet1p. Proteolytic footprinting experiments provide physical evidence that Cet1p interacts with the C-terminal domain of Ceg1p. Trypsin-sensitive sites of Ceg1p that are shielded from proteolysis when Ceg1p is bound to Cet1p are located between nucleotidyl transferase motifs V and VI.

Related Organizations
Keywords

Alanine, Sequence Homology, Amino Acid, mRNA Guanylyltransferases, Molecular Sequence Data, Saccharomyces cerevisiae, Protein Sorting Signals, Nucleotidyltransferases, Chromatography, Affinity, Peptide Fragments, Recombinant Proteins, Acid Anhydride Hydrolases, Kinetics, Candida albicans, Mutagenesis, Site-Directed, Amino Acid Sequence, Promoter Regions, Genetic, Sequence Alignment, Conserved Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Average
Top 10%
Top 10%
gold