Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Medicinearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Medicine
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Medicine
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Medicine
Article . 2021
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
versions View all 3 versions

New small‐molecule compound Hu‐17 inhibits estrogen biosynthesis by aromatase in human ovarian granulosa cancer cells

Authors: Yang Xi; Jiansheng Liu; Haiwei Wang; Shang Li; Yanghua Yi; Yanzhi Du;

New small‐molecule compound Hu‐17 inhibits estrogen biosynthesis by aromatase in human ovarian granulosa cancer cells

Abstract

AbstractEstrogen‐dependent cancers (breast, endometrial, and ovarian) are among the leading causes of morbidity and mortality in women worldwide. Aromatase is the main enzyme that catalyzes the biosynthesis of estrogen, which drives proliferation, and antiestrogens can inhibit the growth of these estrogen‐dependent cancers. Hu‐17, an aromatase inhibitor, is a novel small‐molecule compound that suppresses viability of and promotes apoptosis in ovarian cancer cells. Therefore, this study aimed to predict targets of Hu‐17 and assess its intracellular signaling in ovarian cancer cells. Using the Similarity Ensemble Approach software to predict the potential mechanism of Hu‐17 and combining phospho‐proteome arrays with western blot analysis, we observed that Hu‐17 could inhibit the ERK pathway, resulting in reduced estrogen synthesis in KGN cells, a cell line derived from a patient with invasive ovarian granulosa cell carcinoma. Hu‐17 reduced the expression of CYP19A1 mRNA, responsible for producing aromatase, by suppressing the phosphorylation of cAMP response element binding‐1. Hu‐17 also accelerated aromatase protein degradation but had no effect on aromatase activity. Therefore, Hu‐17 could serve as a potential treatment for estrogen‐dependent cancers albeit further investigation is warranted.

Related Organizations
Keywords

Ovarian Neoplasms, Proteasome Endopeptidase Complex, Activating Transcription Factor 2, Antineoplastic Agents, Hormonal, Aromatase Inhibitors, Apoptosis, Estrogens, Gene Expression Regulation, Neoplastic, Aromatase, Cell Line, Tumor, Proteolysis, Humans, Female, Phosphorylation, Extracellular Signal-Regulated MAP Kinases, Cancer Biology, Cell Proliferation, Granulosa Cell Tumor, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold