Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Plant Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Plant Journal
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

ABA inhibits entry into stomatal‐lineage development in Arabidopsis leaves

Authors: Yoko, Tanaka; Tomoe, Nose; Yusuke, Jikumaru; Yuji, Kamiya;

ABA inhibits entry into stomatal‐lineage development in Arabidopsis leaves

Abstract

SummaryThe number and density of stomata are controlled by endogenous and environmental factors. Despite recent advances in our understanding of stomatal development, mechanisms which prevent stomatal‐lineage entry remain unclear. Here, we propose that abscisic acid (ABA), a phytohormone known to induce stomatal closure, limits initiation of stomatal development and induces enlargement of pavement cells in Arabidopsis cotyledons. An ABA‐deficient aba2‐2 mutant had an increased number/proportion of stomata within a smaller cotyledon, as well as reduced expansion of pavement cells. This tendency was reversed after ABA application or in an ABA over‐accumulating cyp707a1cyp707a3 doublemutant. Our time course analysis revealed that aba2‐2 shows prolonged formation of meristemoids and guard mother cells, both precursors of stoma. This finding is in accordance with prolonged gene expression of SPCH and MUTE, master regulators for stomatal formation, indicating that ABA acts upstream of these genes. Only aba2‐2 mute, but not aba2‐2 spch double mutant showed additive phenotypes and displayed inhibition of pavement cell enlargement with increased meristemoid number, indicating that ABA action on pavement cell expansion requires the presence of stomatal‐lineage cells.

Keywords

Arabidopsis Proteins, Arabidopsis, Cell Enlargement, Endoreduplication, Plant Leaves, Phenotype, Gene Expression Regulation, Plant, Plant Cells, Mutation, Plant Stomata, Basic Helix-Loop-Helix Transcription Factors, Cotyledon, Abscisic Acid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    145
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
145
Top 1%
Top 10%
Top 1%
bronze