Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Letters
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 1999 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 1999
versions View all 3 versions

Cloning and functional characterization of the human sodium‐dependent vitamin C transporters hSVCT1 and hSVCT2

Authors: Daruwala, Rushad; Song, Jian; Koh, Woo S.; Rumsey, Steve C.; Levine, Mark;

Cloning and functional characterization of the human sodium‐dependent vitamin C transporters hSVCT1 and hSVCT2

Abstract

Two sodium‐dependent vitamin C transporters, hSVCT1 and hSVCT2, were cloned from a human kidney cDNA library. hSVCT1 had a 1797 bp open reading frame encoding a 598 amino acid polypeptide. The 1953 bp open reading frame of hSVCT2 encoded a 650 amino acid polypeptide. Using a Xenopus laevis oocyte expression system, both transporters were functionally expressed. By Eadie‐Hofstee transformation the apparent K m of hSVCT1 for ascorbate was 252.0 μM and of hSVCT2 for ascorbate was 21.3 μM. Both transporters were sodium‐dependent and did not transport dehydroascorbic acid. Incubation of oocytes expressing either transporter with phorbol 12‐myristate 13‐acetate (PMA) inhibited ascorbate transport activity. Availability of the human transporter clones may facilitate new strategies for determining vitamin C intake.

Keywords

Molecular Sequence Data, Transport, Organic Anion Transporters, Sodium-Dependent, Ascorbic Acid, Xenopus laevis, Animals, Humans, Ascorbate, Vitamin C, Amino Acid Sequence, Cloning, Molecular, Sodium-Coupled Vitamin C Transporters, Base Sequence, Symporters, Sodium, Proteins, Biological Transport, Bucladesine, Protein Biosynthesis, hSVCT2, hSVCT1, Oocytes, Tetradecanoylphorbol Acetate, Female, Carrier Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    254
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
254
Top 1%
Top 1%
Top 10%
bronze