Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DIGITAL.CSIC
Article . 2013 . Peer-reviewed
Data sources: DIGITAL.CSIC
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Cycle
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Cycle
Article . 2010 . Peer-reviewed
Data sources: Crossref
Cell Cycle
Article . 2010
versions View all 4 versions

Vitamin D: Proteases, protease inhibitors and cancer

Authors: Álvarez-Díaz, S.; Larriba, María Jesús; López-Otín, Carlos; Muñoz Terol, Alberto;

Vitamin D: Proteases, protease inhibitors and cancer

Abstract

The active vitamin D metabolite 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3), Calcitriol) is a major regulator of gene expression in higher organisms. Protein abundance is an endpoint of gene expression that results from the balance between induction and degradation and is essential for adequate cell function. Proteins are degraded by proteases whose activity is in turn controlled by a number of endogenous protease inhibitors. 1,25(OH)(2)D(3) regulates several proteases and protease inhibitors in different cell types, putatively contributing to its regulatory effects of cell physiology. We have recently shown that 1,25(OH)(2)D(3) strongly induces the expression of cystatin D, an inhibitor of several cysteine proteases of the cathepsin family. Cystatin D induction may contribute to the antitumor effect of 1,25(OH)(2)D(3) against colon cancer by mechanisms that are both dependent and independent of cathepsin inhibition. Transcriptomic studies suggest that 1,25(OH)(2)D(3) also modulates the function of the ubiquitin-proteasome system. Thus, proteases and protease inhibitors are candidates to mediate to a certain extent the complex action of 1,25(OH)(2)D(3) in cancer cells.

Keywords

Proteasome Endopeptidase Complex, Cystatins, Models, Biological, Calcitriol, Cysteine Proteases, Neoplasms, Animals, Humans, Protease Inhibitors, Serine Proteases, Vitamin D, Peptide Hydrolases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 43
    download downloads 56
  • 43
    views
    56
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
36
Top 10%
Top 10%
Top 10%
43
56
Green
bronze