Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article . 1998
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article . 1998 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases

Authors: Dieter Brdiczka; Alexander Rück; Gisela Beutner; Birgit Riede;

Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases

Abstract

Complexes between hexokinase, outer membrane porin, and the adenylate translocator (ANT) were recently found to establish properties of the mitochondrial permeability transition pore in a reconstituted system. The complex was extracted by 0.5% Triton X-100 from rat brain membranes and separated by anion exchanger chromatography. The molecular weight was approximately 400 kDa suggesting tetramers of hexokinase (monomer 100kDa). By the same method a porin, creatine kinase octamer, ANT complex was isolated and reconstituted in liposomes. Vesicles containing the reconstituted complexes both retained ATP that could be used by either kinase to phosphorylate external creatine or glucose. Atractyloside inhibited this activity indicating that the ANT was involved in this process and was functionally reconstituted. Exclusively from the hexokinase complex containing liposome internal malate or ATP was released by addition of Ca2+ in a N-methylVal-4-cyclosporin sensitive way, suggesting that the hexokinase porin ANT complex might include the permeability transition pore (PTP). The Ca2+ dependent opening of the PTP-like structure was inhibited by ADP (apparent I(50), 8 microM) and ATP (apparent I(50), 84 microM). Also glucose inhibited the PTP-like activity, while glucose-6-phosphate abolished this effect. Although porin and ANT were functionally active in vesicles containing the creatine kinase octamer complex, Ca2+ did not induce a release of internal substrates. However, after dissociation of the creatine kinase octamer, the complex exhibited PTP-like properties and the vesicles liberated internal metabolites upon addition of Ca2+. The latter process was also inhibited by N-methylVal-4-cyclosporin. The activity of peptidyl-prolyl-cis-trans-isomerase (representing cyclophilin) was followed during complex isolation. Cyp D was co-purified with the hexokinase complex, while it was absent in the creatine kinase complex. The inhibitory effect of N-methylVal-4-cyclosporin on the creatine kinase complex may be explained by direct interaction with the creatine kinase dimer that appeared to support octamer formation.

Related Organizations
Keywords

Porin, Biophysics, Brain, Porins, Adenylate translocator, Cell Biology, Intracellular Membranes, Permeability transition pore, Kinase complex, Biochemistry, Permeability, Mitochondria, Rats, Adenosine Diphosphate, Adenosine Triphosphate, Hexokinase, Liposomes, Animals, Creatine kinase, Protein Tyrosine Phosphatases, Creatine Kinase, Mitochondrial ADP, ATP Translocases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    327
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
327
Top 10%
Top 1%
Top 1%
hybrid